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Abstract

While machine learning (ML) methods can offer numerous opportunities in modeling
multi-physics flows, these approaches often rely on the availability of large datasets for
generating reliable predictions. This can be challenging for propulsion applications,
especially since data generated by industrial sensors, experiments, and numerical
simulations of flow phenomena in propulsion systems can be challenging to collect.

In this dissertation, we directly address current gaps in data availability by devel-
oping a 2.2 TB ML dataset from 34 high-fidelity direct numerical simulations (DNS)
of turbulent flows. We employ this data for benchmarking super-resolution of tur-
bulent flows, and provide insights into the role of different deep learning designs and
computational scale in a popular ML application within multi-physics flows.

To address issues in accessing data from relatively under-explored flow config-
urations (e.g., real, hypersonic, and multiphase fluids) in propulsion systems, we
investigate opportunities offered by linear regression and random forest models in
modeling subgrid-scale (SGS) closure on small turbulent transcritical DNS dataset.
Through a priori analysis, interpretable metrics from random forest models, along
with weights within linear regressors, are shown to assist in discovering analytical
expressions for modeling SGS stresses and a closure term that arises from a real-fluid
equation-of-state.

To ameliorate spurious errors that can arise when integrating insufficiently trained
ML models within multi-physics flow solvers, we develop a strategy involving an ML-
based classifier that assigns three different combustion models of varying fidelity and
cost within a shared simulation domain. Results from a posteriori simulations show
that this data-assisted framework demonstrates promise as a tool for controlling the
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fidelity-cost trade-off in numerical multi-physics flow simulations.
Finally, we investigate the benefits of combining domain knowledge with ML by

integrating a deep learning model with a stochastic differential equation for predicting
the spatio-temporal behavior of laser ignition kernels with sparse ensemble data of
a model rocket combustor. Results show that this hybrid reduced-order model can
predict dominant ignition modes observed from corresponding experimental mea-
surements, and generate spatially resolved ignition probability, at lower costs than
high-fidelity turbulent reacting flow simulations approaches.

Overall, the efforts within this dissertation contribute towards overcoming data
limitations in ML-based modeling within science and engineering, specifically in the
context of multi-physics flows found in propulsion systems.
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Γ∗ bias-corrected moving average of squared neural network gradients

γ∗ bias-corrected moving average of neural network gradients

κ wavenumber
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µ dynamic viscosity
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ϕ arbitrary quantity

Φk transported chemical quantity

ψ arbitrary quantity

ρ density

σ non-linear transformation function
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τ duration

τig ignition duration

τij viscous stress tensor component
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Υ data target/label
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ζ compressibility factor
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Latin Characters

EΥ expectation across labels
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ṁ mass flow rate

κI large-eddy wavenumber

C model coefficient

F filter

K manifold model

M manifold reconstruction function

Vn the n-th node/vertex within a computational graph

a Peng-Robinson intermolecular force coefficient

b Peng-Robinson volume displacement coefficient

C progress variable

d diameter

Dk molecular diffusivity of species k

dW Wiener process

E energy

ei specific internal energy

ek specific kinetic energy

et specific total energy

f arbitrary function

flin linear regression hypothesis for modeling an arbitrary function

fML machine learning hypothesis for modeling an arbitrary function

fNN neural network hypothesis for modeling an arbitrary function
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fsym symbolic regression hypothesis for modeling an arbitrary function

hsk partial sensible enthalpy of species k

hn output from the n-th layer of a neural network

hn output of the n-th neural network layer

JCE cross-entropy loss

jkj diffusion flux component of the k-th chemical scalar

JMSE mean-squared error loss

Jtask machine learning loss function for a single sample for a given task

Jtot machine learning loss function across a set of samples

L domain length

lI integral length-scale

lchar characteristic length-scale

Mk molar mass of species k

Nx number of grid cells in the axial direction

Nc number of convolutional layer channels

Nexp number of experiments

Nfeat number of features/inputs

Np number of model parameters

Nsamp Number of samples

Nvox number of voxels

Nw number of moving windows
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p pressure

Pig ignition probability

Q quantity-of-interest

qi heat flux component

R specific gas constant

r radial coordinate

Ru universal gas constant

Rij spin tensor component

SL laminar flame speed

Sij strain tensor component

T temperature

t temporal coordinate

tI eddy turnover time

tchem chemical time-scale

tconv mixing time-scale

TLES temperature resolved in large-eddy simulation

u′ fluctuating velocity

ui velocity component

V volume

x axial coordinate

xi spatial dimension component
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y longitudinal coordinate

Yk mass fraction of species k

Z mixture fraction

z transverse coordinate

Da Damköhler number

Ka Karlovitz number

Re Reynolds number

Other Characters

· filtered quantity

·̃ Favre-filtered quantity

⟨ · ⟩ volume-averaged quantity
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Chapter 1

Introduction

1.1 Motivation
Predictive modeling of multi-physics flows found in propulsion systems can be compu-
tationally challenging [1, 2]. In these flows, multiscale turbulent mixing and chemical
reactions can impose significant computational restrictions that arise from grid res-
olution requirements, stiff differential equations, and large dimensionality [3, 4]. In
recent years, machine learning (ML) has offered cost-effective and promising modeling
approaches that can help address these challenges [5, 6]. These techniques have been
shown to be useful for model discovery [7], model optimization [8], computational
acceleration [9], reduced-order modeling [10], data analysis [11], fault detection [12],
and control [13]. By improving our ability to model and understand multi-physics
flow phenomena, these data-driven techniques offer opportunities for improving the
efficiency, performance, and robustness of next-generation propulsion systems [6].

Within ML, deep learning has emerged as the most popular family of techniques
due to its (i) proliferation via publicly available software packages [14, 15] (which are
compatible with parallel computing systems for training), (ii) flexibility in managing
computational trade-offs [16], and (iii) ability to scale its predictive accuracy with
increasing diversity and volume of data [17]. In mature ML fields such as computer
vision or natural language processing, large training datasets associated with deep
learning can be conveniently extracted from the World Wide Web [18, 19]. In contrast,

1
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scientific and engineering datasets such as within propulsion and multi-physics flows
require significantly more effort to develop. Databases of thermochemical properties
and flow physics behavior can require laborious experimental measurements [20] and
costly scientific computation [4]. While sensor data can be applied to train ML models
for control and diagnostics applications within propulsion systems, this data is often
proprietary and reserved for commercial interests [6].

This dissertation considers several strategies towards overcoming limitations in-
troduced by current gaps in suitable datasets for employing ML techniques within
propulsion and multi-physics. Firstly, we develop an affordable open-source frame-
work for curating large datasets involving multi-physics flows, in order to directly
address current gaps in data availability [21]. With this data, we demonstrate the
effectiveness of deep learning models when learning a flow physics task, in the pres-
ence of big data. For problems where data cannot be easily accessed, we also develop
strategies for improving the application of ML techniques in these conditions, by
utilizing model interpretability [7], treating out-of-distribution errors [9], and com-
bining data-driven and physics-based approaches [10] in different multi-physics flow
problems.

1.2 Background
This dissertation considers supervised learning models [22] that are trained on flow
physics data. Supervised learning models rely on datasets that have been pre-
processed into inputs/features and target outputs/labels. Linear regression [23], clas-
sification and regression trees (CaRTs) [24], and neural networks (NNs) [25] are exam-
ples of supervised learning methods that are typically employed in classification and
regression tasks. In flow physics and propulsion studies, classification applications
can involve choosing and blending from a set of predefined models within a simula-
tion domain [9, 26], as well as diagnosing faults and detecting anomalous events [27].
Regression applications include closure modeling [21], predicting spatio-temporal dy-
namics [28], inverse modeling [29], and discovering analytic models [7].

In these applications, NN-based approaches can offer the ability to tune various
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computational trade-offs through the manipulation of neural architectures consist-
ing of stacked NN layers [30]. When stacking beyond approximately ten layers [31],
this NN can be referred to as a deep learning model, which has been shown to en-
ables automatic processing of unstructured spatial data without significant data pre-
processing [30]. Numerous deep learning architectures with different properties have
been formed through this flexible framework [21]. For example, model architectures
such as MeshGraphNet [32] and Fourier neural operators (FNO) [33] employ graph
and spectral convolution layers to ensure that flow predictions are mesh invariant.

While deep learning architectures can outperform their shallow counterparts in
terms of predictive accuracy, these methods can require significant amounts of train-
ing data to achieve good performance [16]. Thus, the availability of large multi-
physics flow datasets is crucial for proliferating deep learning approaches that can
tackle propulsion-related problems [21]. In relation to this, high-fidelity numerical
simulations have been essential for providing detailed insights into multi-physics flow
phenomena within propulsion, and can act as a reliable source of ML data. Direct
numerical simulations (DNS) accurately describe flow physics, as long as the grid re-
solves the smallest length-scales associated with turbulent dissipation [34]. With up
to O(109) voxels, O(106) core-hours of simulation time, and O(104) cores on parallel
computing facilities [35–38], high-fidelity DNS of many real-world flows cannot be
performed due to prohibitive costs. Thus, it is common to employ coarser grids with
large-eddy simulations (LES) [39, 40], or by only evolving time-/ensemble-averaged
quantities with Reynolds-averaged Navier-Stokes (RANS) simulations [41, 42] – both
of which rely on closure models (for the consideration of under-resolved phenomena)
that can be discovered from DNS data.

Many existing flow simulation datasets focus on LES and RANS simulations.
McConkey et al. [41] released a dataset for improving turbulence models in incom-
pressible non-reacting RANS. AirfRANS [42] provides both 2D incompressible and
compressible non-reacting RANS data, specifically on airfoil configurations. For re-
acting flows, Huang [40] released a 2D LES dataset for developing reduced-order mod-
els. The largest flow physics dataset, the Johns Hopkins Turbulence Database [43],
provides 3D DNS data from turbulent incompressible non-reacting flow simulations.
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Since these datasets are either 2D, incompressible, or non-reacting, they are not
suitable for propulsion applications involving compressible, reacting, and turbulent
phenomena. This is one reason why ML studies involving these applications employ
self-generated private datasets [6, 44] – introducing challenges to transparent and
reproducible model evaluation.

DNS data provides opportunities for developing closure models for LES and RANS,
which have typically relied on analytic models [45–52]. One method for evaluating
closure models involves a priori analysis, where modeled subgrid-scale (SGS) terms
are compared with exact unclosed terms extracted from filtered DNS. For example,
Ihme et al. [53] performed a priori analysis of turbulent reacting DNS data to iden-
tify models that can accurately capture the unclosed chemical source term in the
flamelet/progress variable (FPV) [54] transport equations. Selle et al. [55] performed
a priori analysis on a three-dimensional DNS database of supercritical binary mix-
tures in turbulent mixing layers to demonstrate that the Smagorinsky model [45]
performed poorly when predicting SGS stresses, while the gradient [46] and scale-
similar [47] models performed well. In the same work, the consideration of previously
neglected unclosed terms for pressure and heat flux were shown to be essential un-
der supercritical conditions. Unnikrishnan et al. [56] performed a priori analysis
on two-dimensional DNS of a transcritical reacting liquid-oxygen/gaseous-methane
(LOX/GCH4) mixture to demonstrate that the mixed SGS model [51] was three
times more accurate than the sole use of the dynamic Smagorinsky [48].

ML methods offer an alternative approach for developing closure models in multi-
physics flows [7]. A priori studies have been performed to demonstrate that NNs
can provide accurate closure for turbulent combustion [57–59]. Henry de Frahan
et al. [60] demonstrated that NN models can generate as accurate results as a CaRT
approach with 25-fold improvement in computational costs when predicting the sub-
filter probability density function (PDF). Ranade and Echekki [61] conducted an a
posteriori study (where the closure model is integrated with a multi-physics flow
solver) to show that NN models can be trained with experimental data to generate
closure models for chemical scalars in RANS simulations of turbulent jet flames.
In many of these efforts, the developed ML models suffer issues related to model
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generalizability, especially when predicting with out-of-distribution (OOD) inputs.
Another popular ML application within multi-physics reacting flow solvers in-

volves the reduction of computational costs that arise from complex combustion chem-
istry [6]. Prior to the popularity of ML techniques, numerous strategies have been
employed for reducing the computational cost of detailed chemical mechanisms via
tabulation approaches. Some of the most popular of these tabulated chemistry mod-
els are categorized under flamelet methods, which represent combustion chemistry
through solutions of representative flame configurations, such as laminar counterflow
diffusion flames, freely propagating premixed flames, or homogeneous reactor systems.
Examples of flamelet methods include the Burke-Schumann solution [62], the flame-
prolongation in intrinsic lower-dimensional manifold [63], the flamelet-generated man-
ifold method [64], and the FPV method [53, 54]. These reduced manifold models are
commonly employed to describe specific combustion regimes – a multitude of which
can exist within practical combustors. However, expert knowledge and experimental
data is often required to correctly assign the most appropriate combustion model. One
solution to this issue is provided by dynamic adaptive chemistry methods [65–67] that
save computational cost by reducing detailed chemical mechanisms, and transitioning
between smaller sets of chemical models to represent combustion regimes of differ-
ent chemical fidelity. A general mathematical framework was proposed by Wu et al.
[68, 69] through the Pareto-efficient combustion (PEC) approach. In this approach,
the compliance of a combustion submodel with the underlying flowfield representation
is assessed through the construction of a so-called drift term, taking into considera-
tion user-specific requirements about quantities-of-interest (QoIs) and computational
cost [70].

ML methods can be employed towards developing accurate and affordable com-
bustion models for these multi-physics flow solvers. For example, NNs has been
successfully integrated within simulations of turbulent reacting flows as non-linear
approximators for representing chemical reactions [71–73]. Sen and Menon [74], as
well as Alqahtani and Echekki [75], also demonstrated that NNs can be used for
replacing stiff ODE solvers in turbulent flame simulations, with good accuracy and
CPU performance. Ihme et al. [59], Kempf et al. [76], and Owoyele et al. [77] used
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optimal NN tabulation to replace conventional tabulation methods in manifold-based
simulations. Chatzopoulos and Rigopoulos [78], and Franke et al. [79] demonstrated
that training data extracted from 100 laminar flamelets was sufficient for training NNs
for representing chemistry in simulations of more complex turbulent flame configura-
tions. With this generic training set, NNs showed a small capacity for extrapolation,
but it was noted that accurate predictions were challenging if the target predictions
deviated too largely away from the training set.

ML methods can offer benefits in cost and accuracy when examining flow physics
phenomena that require significant efforts and resources, such as with the statisti-
cal characterization of ignition [10]. During ignition, stochasticity arises from the
interaction of the ignition kernel with the turbulent fuel/oxidizer mixture, and from
variations in kernel deposition energy, which can affect the evolution of the ignition
kernel [80].

Ensembles of experimental measurements are typically used to investigate stochas-
tic ignition under a variety of conditions. For example, Ahmed et al. [81] performed
ensemble tests on a CH4/air counterflow flame, and found that convective and local
strain effects were significant in influencing ignition probability in this fundamental
configuration. Several studies [82–84] have focused on the effects of fuel chemistry
and mixture composition in determining ignition probability in experimental con-
figurations that represent gas turbine combustors. In another work, Cordier et al.
[85] employed a premixed CH4/air confined swirl combustor configuration to show
the importance of turbulent flow properties in influencing kernel trajectory and ig-
nition probability. Strelau et al. [86] investigated laser ignition in a non-premixed
gaseous methane/oxygen (CH4/O2) model rocket combustor and found three distinct
modes of successful ignition: (i) direct ignition, where the hot plasma is deposited
in a reactive fuel/oxidizer mixture and rapidly transitions into a sustained flame, (ii)
indirect ignition, where the hot plasma is deposited outside the reactive mixture and
transitions to a flame after the asymmetric plasma kernel slowly interacts with the
turbulent jet, and (iii) failed ignition.
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High-fidelity simulations can also provide detailed insights about ignition phe-
nomena. For instance, Lacaze et al. [87] performed LES of a model rocket combus-
tor [88] to examine ignition processes as well as flame propagation, anchoring, and
stabilization mechanisms. Wang et al. [89] examined DNS of a laser kernel in qui-
escent air to demonstrate the importance of initial kernel morphology on influencing
plasma-ejection that leads to the aforementioned indirect ignition. Ensemble studies
with high-fidelity simulations can incur large computational costs, especially when
treating combustion with finite-rate chemistry (FRC) [90, 91]. Thus, many ensemble
simulations have employed cost-efficient combustion models involving global [92] or
tabulated [93] chemistry.

Physics-based and ML-based reduced-order modeling approaches present a cost-
effective alternative for evaluating the statistical behavior of forced ignition phenom-
ena to predict the presence of successful ignition. Physics-based models typically com-
bine (i) probabilistic arguments with (ii) flowfields obtained from high-fidelity inert
simulations. Neophytou et al. [94] estimated ignition probability with an ensemble-
based model that predicts volume fraction of burned gases using spark location, initial
kernel size, as well as time-averaged turbulent velocity and mixture fraction flowfields
that were extracted from inert LES. Esclapez et al. [95] employed flowfields from in-
ert LES to develop a stochastic differential equation-based (SDE) model that directly
transports PDFs to generate an ignition map for a swirl combustor. While these
approaches have demonstrated their predictive capabilities, they do not consider phe-
nomena related to kernel morphology and plasma-ejection found in laser ignition sys-
tems. Using ML, Sforzo and Seitzman [96] developed a support vector machine-based
approach for predicting ignition probability within partially-stirred reactor simula-
tions. Popov et al. [97] showed that convolutional NNs (CNNs) outperformed other
reduced-order approaches in ignition boundary prediction of a jet-in-crossflow con-
figuration. The authors noted that this deep learning approach can extract spatial
information effectively, but suffers from poor OOD predictions if developed without
considering essential physics.

This summarizes related efforts in predictive modeling (via both physics/chemistry-
and ML-based approaches) of multi-physics flow phenomena found within propulsion
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systems. Throughout this section, we highlighted the importance of sufficient training
data in enabling the development of ML-based approaches in a variety of multi-physics
flow problems involving closure modeling, combustion modeling, and reduced-order
modeling – especially when extrapolating ML models to OOD conditions. Next, we
present the research objectives contained within this dissertation.

1.3 Objectives
To address issues that can arise from current gaps in multi-physics flow data, the
work in this dissertation has the following objectives:

• To directly address gaps in multi-physics flows data through the curation of
large datasets.

• To examine opportunities provided by various ML methods in multi-physics
flow problems with limited data.

• To develop a strategy for mitigating OOD errors during the integration of ML
methods with physical models.

• To identify benefits from combining physics-based knowledge with ML in treat-
ing data limitations.

1.4 Accomplishments
Here, we present the key accomplishments found within this dissertation in the context
of the objectives discussed in Section 1.3. In summary, we:

• Curated and distributed the largest public dataset of turbulent compressible
reacting flows, aimed towards training ML models [21].

• Performed a reproducible benchmark that provided insight towards the scaling
behavior of deep learning models in a multi-physics flow problem [21].
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• Demonstrated the utility of interpretable ML approaches involving sparse sym-
bolic regression and CaRTs in discovering analytic expressions of closure models
for turbulent transcritical flows [7].

• Integrated an ML-based classifier with well-understood combustion models within
a multi-physics flow solver that enabled the user-specified control of the cost-
accuracy trade-off when simulating a rocket combustor configuration [9].

• Developed a reduced-order modeling approach by combining a deep learning
model with a physics-based differential equation for capturing laser-induced
ignition within a rocket combustor configuration [10].

1.5 Dissertation Outline
The remaining parts of this dissertation are structured as follows:

• Chapter 2 provides the governing equations for the multi-physics high-fidelity
flow simulations presented in this work. In addition, supervised learning meth-
ods, focusing on CaRTs [24] and NNs [25], will be outlined in this chapter as
well.

• Chapter 3 describes a 2.2 TB dataset containing 744 full-domain samples from
34 high-fidelity DNS of turbulent flows. With this data, we benchmark a total
of 49 variations of five deep learning approaches for turbulence modeling via 3D
super-resolution (SR). In addition, we analyze scaling behavior of these models.
We demonstrate that (i) deep learning predictive performance can scale with
model size and cost, (ii) architecture choice matters significantly, especially
for smaller models, and (iii) the benefits of physics-based losses can persist at
moderate model sizes.

• Chapter 4 examines opportunities from two interpretable ML approaches, namely
the random forest regressor and the sparse symbolic regression, in discovering
analytic expressions for SGS closure for flows found in high-pressure propulsion
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systems. To this end, inert and reacting DNS of transcritical LOX/GCH4 flows
are performed. Using this data, a priori analysis is performed on the Favre-
filtered DNS data to compare the accuracy of random forest SGS-models with
conventional physics-based SGS-models. SGS stresses calculated with the gra-
dient model are shown to have good agreement with the exact terms extracted
from filtered DNS. Results demonstrate that random forests can perform as
effectively as algebraic models when modeling SGS stresses, when trained on
a sufficiently representative database and with a suitable choice of the feature
set. The employment of the random forest feature importance score is shown
to enable the discovery of an analytic model for SGS stresses through sparse
symbolic regression. This is approach is also employed demonstrated towards
modeling the SGS temperature, a term that arises from filtering the non-linear
real-fluid equation-of-state (EoS), via a priori analysis.

• Chapter 5 outlines the integration of random forest classifiers within a multi-
physics flow solver for local and dynamic submodel assignment in turbulent
combustion simulations. This method is demonstrated in simulations of a single-
element gaseous-oxygen/gaseous-methane (GOX/GCH4) rocket combustor; a
priori as well as a posteriori assessments are conducted to (i) evaluate the ac-
curacy and adjustability of the classifier for targeting different QoIs, and (ii)
assess improvements, resulting from the data-assisted (DA) combustion model
assignment, in predicting target QoIs during simulation runtime. Results from
the a priori study show that random forests, trained with local flow properties
as input variables and combustion model errors as training labels, assign three
different combustion models – FRC, FPV, and inert mixing (IM) – with reason-
able classification performance even when targeting multiple QoIs. Applications
in a posteriori studies demonstrate improved predictions from DA simulations,
in temperature and carbon dioxide (CO) mass fraction, when compared with
monolithic FPV calculations.

• Within Chapter 6, we investigate the potential of combining flow physics knowl-
edge with ML in predicting laser ignition of a gaseous CH4/O2 model rocket
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combustor. To this end, we introduce a hybrid stochastic physics-embedded
deep learning framework that combines sparse experimental data from Schlieren
measurements with inert LES for predicting the spatio-temporal evolution of
ignition kernel location and morphology. This model combines a SDE for model-
ing kernel dynamics and a deep learning model for representing kernel morphol-
ogy, which is essential in laser ignition. Results demonstrate that this model can
reasonably capture behavior associated with the three dominant ignition modes,
namely direct, indirect, and failed ignition, along with statistics associated with
kernel growth and position, at lower computational costs than high-fidelity re-
acting simulations. In addition, we demonstrate that this modeling framework
can be employed for generating spatially resolved ignition probability maps by
incorporating physics to represent kernel interaction with the turbulent jet. We
note that limitations in accuracy can be observed when predicting with vastly
OOD data. Nevertheless, these results demonstrate that this physics-embedded
ML approach can statistically characterize forced ignition in a cost-effective
manner, as long as sufficiently representative data is available.

• In Chapter 7, we summarize key conclusions from preceding chapters and discuss
recommendations for future work.



Chapter 2

Theoretical and Computational
Methods∗

2.1 Governing Equations

2.1.1 Conservation Equations

Multi-physics flow phenomena in propulsion systems can be simulated by solving
governing equations for transporting mass, momentum, energy, and scalar, respec-
tively [98]:

∂ρ

∂t
+ ∂ρuj

∂xj
= 0 , (2.1a)

∂ρui
∂t

+ ∂ρuiuj
∂xj

= − ∂p

∂xi
+ ∂τij
∂xj

, (2.1b)

∂ρet

∂t
+ ∂ρetuj

∂xj
= −∂puj

∂xj
+ ∂τijui

∂xj
− ∂qj
∂xj

, (2.1c)

∂ρΦk

∂t
+ ∂ρΦkuj

∂xj
= −∂jkj

∂xj
+ ω̇k , (2.1d)

∗This chapter contains select figures and method descriptions from the ML review paper by Ihme
et al. [6], with significant modifications made for this dissertation. M. Ihme, W.T. Chung, and A.A.
Mishra contributed equally to reviewing ML fundamentals and applications.

12
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with density ρ, velocity component ui, pressure p, viscous stress tensor component
τij, specific total energy et, and heat flux component qj. Φk represents transported
chemical scalars, while jk and ω̇k are the corresponding diffusion flux and source term,
respectively.

When employing FRC, the chemical species mass fraction Yk is transported, i.e.,
Φk ≡ Yk for species k = [1, Ns] where Ns is the number of species. In this case, the
diffusion flux jki for multi-component flow with the mixture-averaged diffusion model
is defined as [99]:

jki = −ρDk
∂Yk
∂xi

+ ρYk
Ns∑

j=1
Dj

∂Yj
∂xi

, (2.2)

where Dk is the molecular diffusivity of species k. Assuming negligible Dufour effects,
heat flux qi in a multi-component flow is defined as [98]:

qi = −λ ∂T
∂xi

+
Ns∑

k=1
jkih

s
k , (2.3)

where λ is the thermal conductivity, T is the temperature, and hsk is the partial
sensible enthalpy of species k.

For Newtonian flows, assuming negligible bulk viscosity, the stress tensor τij is
defined as:

τij = 2µ
(
Sij −

1
3Skkδij

)
, (2.4a)

Sij = 1
2

(
∂ui
∂xj

+ ∂uj
∂xi

)
, (2.4b)

with dynamic viscosity µ.
The specific total energy et is defined as the sum of specific internal energy ei and

specific kinetic energy ek:

et = ei + ek, (2.5a)

ek = 1
2uiui . (2.5b)
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In the compressible flow formulation used in this work, pressure p in Equation (2.1)
is obtained from an EoS. For gas-like phases, this is typically represented with the
ideal gas EoS:

p = ρRT , (2.6a)

R = Ru

Mmix

, (2.6b)

1
Mmix

=
Ns∑

k=1

Yk
Mk

, (2.6c)

with specific gas constant R, universal gas constant Ru, mean molar mass Mmix of a
multi-component mixture, and molar mass Mk of species k.

For high pressure flows found in propulsion systems, the Peng-Robinson (PR)
cubic EoS [100] can be employed to model real-fluid thermodynamics:

p = ρRT

1− bρ −
aρ2

1 + 2bρ− b2ρ2 , (2.7)

where the coefficients a and b account for effects of intermolecular forces and volumet-
ric displacement, and are dependent on temperature and composition [101]. Details
regarding the evaluation of specific heat capacity, internal energy, and partial enthalpy
from the PR EoS is described in Ma et al. [102].

2.1.2 Large-eddy Simulation

Due to large computational costs, solving Equation (2.1) directly via DNS is not
tractable for simulating many real-world propulsion systems. LES offers a feasible
approach that resolves only the large-scale flow structures, with the finest scales
treated with closure models [46, 50–52]. Formally, the compressible LES equations
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are explicitly obtained through Favre-filtering [103] an arbitrary quantity ϕ:

ϕ̃ = ρϕ

ρ
, (2.8a)

ϕ(x) =
∫

V
ϕ(x)F(x− y) dy , (2.8b)

where ·̃ denotes a Favre-filtered quantity, · is a filtered quantity obtained through a
volume V integral with a LES filter F across two spatial coordinate locations given
by x and y. After Favre-filtering, the governing equations become:

∂ρ

∂t
+ ∂(ρũj)

∂xj
= 0 , (2.9a)

∂(ρũi)
∂t

+ ∂(ρũiũj)
∂xj

= − ∂p

∂xi
+ ∂τ ij
∂xj

+
∂τ sgsij

∂xj
, (2.9b)

∂(ρẽt)
∂t

+ ∂(ρẽtũj)
∂xj

= −∂(pũj)
∂xj

+ ∂(τ ijũi)
∂xj

+
∂(τ sgsij ũi)
∂xj

− ∂qj
∂xj
− ∂qsgsj

∂xj
, (2.9c)

∂(ρΦ̃k)
∂t

+ ∂(ρΦ̃kũj)
∂xj

= −∂jkj
∂xj
− ∂jsgskj

∂xj
+ ω̇k , (2.9d)

with superscript · sgs denoting SGS quantities that are typically treated via closure
modeling.

This dissertation largely focuses on the SGS stress tensor. For treatment of other
SGS terms, we refer the reader to several texts [98, 103, 104] and review articles [105,
106]. The SGS stress tensor from the LES momentum equation (Equation (2.9b)) is
given by:

τ sgsij = ρ(ũiuj − ũiũj) , (2.10)

which can be treated by analytic models such as the Vreman [50] and gradient [46]
models.

The Vreman SGS model [50], which is derived from the eddy-viscosity hypothesis,
can be employed towards treating the unclosed SGS stresses τ sgsij in Equation (2.9):

τ sgs,vij ≈ −2ρνsgsS̃ij + 1
3τ kkδij , (2.11)
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where the eddy viscosity νsgs is evaluated for a filter width ∆ as follows:

νsgs = Cv
√

B

gijgij
, (2.12a)

gij = ∂ũi
∂xj

, (2.12b)

B = β11β22 − β2
12 + β11β33 − β2

13 + β22β33 − β2
23 , (2.12c)

βij = ∆2
gkigkj , (2.12d)

where a Vreman coefficient Cv of 0.07 is typically used in isotropic turbulence [50].
The gradient model by Clark et al. [46] is extracted from the first term in the

Taylor series expansion of the filtering operation, and is given by:

τ sgs,gij ≈ ρCg∆2 ∂ũi
∂xk

∂ũj
∂xk

, (2.13)

where a coefficient Cg of 1/12 is typically used [46].

2.2 Machine Learning Methods

2.2.1 Supervised Learning

In supervised learning [22], data consists as a set of structured input-output pairs
for a given learning task. The purpose of a supervised learning algorithm is to es-
timate parameters Θ that can model an optimal hypothesis fML that approximates
the distribution of label vectors Υ during inference with feature vector χ to generate
predictions Υ̂:

Υ̂ = fML(χ|Θ) , (2.14a)

fML(χ|Θ) ≈ Υ , (2.14b)

where the features may consist of raw data inputs in the so-called end-to-end learn-
ing [30] (typically done with deep learning), or pre-processed forms of the raw data
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that have been subject to feature extraction/engineering [107].
Candidates for this optimal hypothesis are evaluated through an error measure,

i.e., a total objective loss function, Jtot [22]. During training, an iterative optimization
scheme minimizes the error measure to estimate optimal parameters Θ. Across Nsamp

number of data samples, this loss function is expressed as:

Jtot[Υ, fML(χ|Θ)] = 1
Nsamp

∑
all samplesJtask[Υ, fML(χ|Θ)] . (2.15)

Similarly, the specific objective function also Jtask depends on the given learning
task. Within supervised learning, we note that the model parameters Θ are the values
that are determined solely during a training loop. For example, model parameters
are equivalent to the model weights in NNs and linear regression. All other design
choices that improve predictive accuracy (such as model choice, model architecture,
and loss function choice) are known as hyperparameters. The selection of these hyper-
parameters are typically guided by a combination of empirical findings from existing
literature, intuition from ML theory, and hyperparameter search (which involves a
separate optimization procedure for determining optimal choices) [22].

In a classification task, an ML model fML learns to predict a class (indexed by
1 < k ≤ Nclass classes) from the features χ. Thus, prior to training, the prediction
targets Υk ∈ Υ are labeled as:

Υk =





1 , if the sample belongs to the class k,

0 , otherwise.
(2.16)

During training, the cross entropy loss:

JCE(ϕ,ψ) = −
Nclass∑

k=1
ϕk log(ψk) , (2.17)

which measures the difference between an estimated probability distributionψ against
a true distribution ϕ via information theory [22], is minimized. When combining
Equation (2.16) with Equation (2.17), the cross-entropy loss reduces to a negative



CHAPTER 2. THEORETICAL AND COMPUTATIONAL METHODS 18

log-likelihood function:

JCE[Υ, fML(χ|Θ)] = − log[fML(χ|Θ)] , (2.18)

where 0 < fML(χ|Θ) ≤ 1, which can be perceived as the likelihood function within
statistics [22]. As such, Equation (2.18) can also be referred to as the negative log-
likelihood function. By minimizing this function, the classification task can be viewed
formally as a form of maximum likelihood estimation, i.e., estimating the parameters
of an assumed probability distribution given some observed data [22].

For regression problems, a common loss function is the mean-squared error (MSE):

JMSE(ϕ, ψ) = (ϕ− ψ)2 , (2.19)

which is simply the Euclidean distance between two arbitrary quantities ϕ and ψ.
If the data possesses a Gaussian distribution, minimization of the MSE can also be
shown to be equivalent to the minimization of the negative log-likelihood function [22].

In supervised learning, the performance of a model is often evaluated in terms
of its ability to generalize to OOD data. This generalizability can be formally mea-
sured through a test generalization error ϵgen. By considering a supervised learning
method evaluated via an MSE function, we can express this generalization error as
the expectation ED of the squared error across all possible training datasets [22]:

ϵgen =ED
{
[Υ− fML(χ|Θ)]2

}
,

= ED[fML(χ|Θ)]− EΥ|χ(Υ)
︸ ︷︷ ︸

Bias

+ ED
(
{ED[fML(χ|Θ)]− fML(χ|Θ)}2

)

︸ ︷︷ ︸
Variance

+ EΥ[Υ− EΥ|χ(Υ)]
︸ ︷︷ ︸

Noise

, (2.20)

where EΥ is the expectation across the labels and EΥ|χ is the feature-conditioned
expectation across labels.

As shown in Equation (2.20), the generalization error ϵgen which can be decom-
posed to model variance, bias, and noise terms. Model bias represents the model error
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that is independent of data encountered, and can be viewed as the inherent error in
the type of ML model chosen. An example of this involves the linear regression model,
which is biased to assume a linear relationship between features and labels. This bi-
ased assumption results in poor capturing of any non-linear relationships within the
data, and can result in underfitting. Model variance captures the sensitivity of the
ML model to variations across different datasets. A model with high variance will
capture patterns in a given training data that may not be found in other similar
datasets. This issue is found in expressive ML models with large number of model
parameters, such as decision trees or deep learning models. The noise term represents
the irreducible error that arises from uncertainties in feature/label representation.

2.2.2 Linear Regression

As mentioned in Section 2.2.1, linear regression [23] is one of the simplest forms of
supervised learning. A linear model flin is typically expressed as the weighted sum of
input χ:

flin(χ|Θ) =
Nfeat∑

j=1
Θjkχj , (2.21)

with k number of outputs and Nfeat is the number of features χj ∈ χ. During
supervised learning, the MSE (Equation (2.19)) loss can be minimized to estimate
the optimal model parameters Θ.

2.2.3 Sparse Symbolic Regression

In sparse regression, the loss function across all samples is regularized with the l1-norm
of the model parameters/coefficient or lasso method [108]:

Jtot[Υ, flin(χ|Θ)] = 1
Nsamp

∑
all samplesJMSE[Υ, flin(χ|Θ)] + Λ||Θ||1 , (2.22)
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where Λ is a regularization parameter for controlling the trade-off between the MSE
loss and the l1-norm that is determined via a hyperparameter search. During opti-
mization, the l1-norm of the model coefficients ||Θ||1 are also minimized. This en-
courages sparsity, i.e., reduces the number of terms in the linear model, as zero-valued
model parameters are favored during optimization.

This regularized regression approach can be useful for discovering symbolic/ana-
lytic models [109]. This is done by including candidate model terms as the regression
input χ, and allowing an optimization method to discover the optimal linear com-
bination of terms that result in a symbolic expression that matches a set of target
values Υ. The inclusion of the sparse loss regularization term Λ||Θ||1 results in zero-
valued coefficients for candidate terms that are not relevant to the target symbolic
expression. To extend the method beyond linear expressions, non-linearities can be
introduced by replacing χ with non-linear terms σ(χ) constructed from the original
variables. In this dissertation, we construct a model with non-linear variables by
evaluating d-order polynomial functions:

fsym(χ|Θ) = flin(σ(χ)|Θ) , (2.23a)

σ(χ) =
[
1 χ1 χ2 · · · χn χ2

1 χ1χ2 · · · χdn

]
, (2.23b)

where n number of features in the original feature vector χ. Equation (2.23) shows
that the dimensionality of this approach scales to the order of polynomial functions
O(nd). Hence, the number of candidate variables must be reduced for this method
to remain tractable.

2.2.4 Neural Networks

NNs consist of successive layers of weighted mathematical operations that are ar-
ranged in a network structure [22]. The outputs of a k-layered NN can be expressed
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as the output of the final layer hk:

fNN(χ|Θ) = hk , (2.24a)

hn = fn(hn−1|Θn)] where n = [1, . . . , k] , (2.24b)

h0 ≡ χ , (2.24c)

where fn is an arbitrary mathematical operation and Θn represents the model weights
– both at the n-th layer. Since the inputs χ are propagated successively from the zero-
to k-th NN layers during inference, Equation (2.24) is known as forward propagation.

Training a NN involves the estimation of the model parameters Θ through mini-
mization of a loss function Jtot via an iterative gradient descent optimization scheme.
Model parameters in NNs can be updated via a vanilla batch gradient descent scheme [22]
in can be expressed as:

Θit+1
n = Θit

n − Λ∂Jtot
∂Θit

n

, (2.25)

where Λ is a tunable learning rate, which scales the size of the parameter update,
that is typically determined via a hyperparameter search. During gradient descent,
large parameter updates result in faster training but can result in convergence issues.
In contrast, smaller parameter updates are more computationally stable, but can be
costly as more iterations are needed to converge to an optimal condition. Thus, a fixed
learning rate in the vanilla gradient descent scheme can lead to poor convergence.

As such, recent ML models employ an adaptive gradient descent scheme. The
Adaptive Moment (Adam) estimation scheme [110] is a popular optimization approach
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that changes the size of parameter updates through moving averages:

Θit+1
n = Θit

n − Λ γ∗,itn√
Γ∗,itn + C0

, (2.26a)

γ∗,itn = γitn
1− (C1)it

, (2.26b)

Γ∗,itn = Γit
n

1− (C2)it
, (2.26c)

γitn = C1γ
it−1
n + (1− C1)

∂Jtot
∂Θit

n

, (2.26d)

Γit
n = C2Γit−1

n + (1− C2)
(
∂Jtot
∂Θit

n

)2

, (2.26e)

where C0 is a small constant added for numerical stability, with coefficients C1 = 0.9
and C2 = 0.999 typically used to scale the contribution (or momentum) of moving
averages of the NN gradients γitn and the squared gradients Γit

n from previous itera-
tions. γ̂itn and Γ̂it

n are the moving averages that are scaled to correct for the bias from
previous gradient iterations.

For a k-layered NN, the model weights Θit
n of the n-th layer are updated by passing

back gradients (i.e., backpropagation [25]) from succeeding layers through the chain
rule, in each iteration:

∂Jtot
∂Θit

n

= ∂Jtot
∂hk

∂hk
∂hk−1

. . .
∂hn+1

∂hn

∂hn
∂Θit

n

. (2.27)

The initial weights can be initialized randomly through a uniform or normal dis-
tribution [22]. However, when many layers are used in deep learning models, i.e.,
n ≫ 1, NN gradients can explode (i.e., gradients approach infinity) or vanish (i.e.,
gradients approach zero) due to large number of multiplications performed during
chain rule operations. For an NN with Nparam number of weights, scaling the initial
random weights to an appropriate range with a standard deviation of O(1/

√
Nparam)

has been shown to ameliorate this issue. Glorot [111] and He [112] initialization are
popular variations incorporating this scaling approach.

Note that Equation (2.25) expresses vanilla batch gradient descent across the
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Algorithm 1 Pseudocode for Mini-batch Gradient Descent with Adam optimizer.
Require: Training data, learning rate, initial parameters, batch size,

1: while not converged do
2: Randomly shuffle the training data
3: for each mini-batch do
4: for each training sample in mini-batch do
5: Compute gradients with Equation (2.27).
6: end for
7: Compute mean of gradients in mini-batch
8: Update parameters Θ with Equation (2.26).
9: end for

10: end while
Ensure: Updated parameters Θ

entire batch of available training data. Evaluating and storing the gradients for large
number of samples can be computationally expensive. Thus, parameter updates can
also be performed after gradient computations of a mini-batch [30] (with a user-
defined size) can be partitioned from the training data, as shown in the training
loop in Algorithm 1. The batch size can be treated as a hyperparameter, but is
often chosen based on memory constraints of computing hardware. Here, epochs
are typically used to measure the number of optimization iterations in mini-batch
optimization. Specifically, one epoch corresponds to the number of iterations required
to loop through all training data once. During optimization, it is common to train
for multiple epochs (depending on the available number of data samples).

Fully Connected Layers

The outputs of the n-th layer hn of this architecture [22] (shown in Figure 2.1) are
computed via:

hn = σn[flin(hn−1|Θn)] , (2.28)

where σn is an activation function at the n-th layer that is typically used to introduce
non-linearities to the mathematical operations. The sigmoid activation function has
traditionally been employed in early NN work [22]. For a single input χ, this can be
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Fully Connected Layers

The outputs of the n-th layer hn of this architecture are computed via

hn = ‡n[flin(hn≠1|�n)] , (2.26)

where ‡n is an activation function at layer n that is typically used to introduce non-
linearities to the mathematical operations. The sigmoid function is has traditionally
been employed in early NN work [70]. For a single input ‰, this can be expressed as:

sigmoid(‰) = 1
1 + exp(≠‰) . (2.27)

However, later studies have found that the presence of near-zero gradients of this
function can lead to vanishing gradients in backpropagation, especially with large
number of NN layers.Thus, the rectified linear unit (ReLU) [77] function is preferred
as the activation function in more recent work:

ReLU(‰) = max(0,‰) . (2.28)

Input Layer Hidden Layers Output Layer

(a) Network architecture.TODO: change Y,X

Figure 2.1: Schematic of a fully connected neural network. (a) Network architecture
of a multilayer perceptron, consisting of an input layer with four input channels
Xi=1,...,4, two output channels Y1 and Y2, and three hidden layers with 5, 5, and 3
neurons, respectively. (b) Representation of an operation on a neuron l as a logistic
regression with a weighted summation over input state and application of transfer
function ‡.
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Figure 2.1: A fully connected NN with four features χ, 2 predictions Υ̂, and three
hidden layers h.

expressed as:
sigmoid(χ) = 1

1 + exp(−χ) . (2.29)

However, later studies have found that the presence of near-zero gradients of this
function can lead to vanishing gradients in backpropagation, especially with large
number of NN layers [30]. Thus, the rectified linear unit (ReLU) [112] function is
preferred as the activation function in more recent work:

ReLU(χ) = max(0, χ) . (2.30)

Convolutional layers

Convolutional NN [113] (CNN) architectures consist of convolutional layers made
up of multiple filters. In computer vision, a filter is a function that operates on a
local neighborhood of a pixel to generate an output [30]. These can be viewed as
moving windows that move across at images, flowfields, or multidimensional tensors
for extracting features such as texture, edges, and flowfield-related pattern.

The simplest filter replaces the corresponding pixel in the output by the maximum
value of the pixel’s neighborhood in the input. These replacements correspond to
the pooling operations used in NNs (Figure 2.2a), where a max-pooling operation is
employing using a 2 × 2 filter, with the filter moving across two rows and columns
(strides). A more complicated filtering operation involving convolutions (Figure 2.2b)
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(a) Max-pooling with a 2× 2 filter and a stride of 2.
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(b) Convolution with a 2× 2 filter and a stride of 2.

Figure 2.2: Operations in a CNN.

occurs when the filtered result hi,j ∈ h, at row i and column j of a 2D matrix
(representing an image or flowfield) is a weighted sum over a small neighborhood of
pixels χi+k,j+l ∈ χ:

hi,j =
K∑

k=1

L∑

l=1
χi+k,j+l Θk,l . (2.31)

The entries of the weight filter or mask Θk,l ∈ Θ are referred to as the filter coef-
ficients and K and L are the widths of the filter. Note that while this chapter has
focused on 2D CNNs, these operations can be arbitrarily extended for larger number
of dimensions.

Depending on the problem, filter sizes and strides can be chosen via hyperparam-
eter tuning or by the following intuition: filters which are too large will result in
large information losses, while filters which are too small will result in low sharing of
information with neighboring pixels [30]. Using large strides has the same effect of
downsampling the spatial data.

Deep Learning

A deep learning model is an NN model with more than approximately ten layers [31],
where the specific design of each deep learning architecture can be further motivated
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by empirical findings and intuition. One empirical finding is that the sole use of
fully connected layers within an NN does not lead to significant benefits in prediction
beyond five layers [114]. This is one reason why fully connected NNs (without other
types of layers) are sometimes considered traditional ML, and not deep learning [30].
Another empirical finding is that deep learning models tend to improve in predic-
tive performance with increasing number of model parameters [16]. However, since
computational complexity within 2D convolutional and fully connected layers scales
approximately quadratically with the dimensionality of layer inputs, deep and narrow
architectures are preferred over shallow and broad architectures [30].

As previously mentioned, the reliance on chain rule (Equation (2.27)) for training
can also result in issues related to vanishing and exploding gradients. To address this,
several layer normalization schemes have been proposed [115, 116]. Another solution
seen in popular deep learning models such as ResNet [114] and U-Net [117] is the use
of residual/skip connections. This type of NN mechanism uses a residual addition
operation to allow backpropagation-based training to skip a few layers, thus reducing
the amount of chain rule operations that can lead to zero- or infinite-valued gradients.
Formally, the output of a residual connection hskipn is the sum of the outputs of the
n-th layer hn with the outputs of the m-th preceding layer hn−m:

hskipn = hn + hn−m . (2.32)

2.2.5 Classification and Regression Trees

CaRTs are a family of supervised learning approaches that represents complex rela-
tionships by recursively partitioning a high-dimensional input space [24]. Here, we
discuss the decision tree and the random forest algorithms.

Decision Trees

A decision tree [118] is a CaRT with a tree structure that consists of nodes represent-
ing decision points and branches representing outcomes. The n-th internal node Vn
corresponds to a feature in the input space and splits the data based on a threshold
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value Θj at the j-th split, leading to two or more child nodes. The final layer of
nodes, i.e., the leaf nodes, of the tree represent the final decision or prediction, which
can be a class label in classification trees or a continuous value in regression trees. As
shown in Algorithm 2, inference is performed on a decision tree through a recursive
search [24].

Algorithm 2 Pseudocode for Recursive Decision Tree Inference
1: procedure Predict(node, features χ)
2: if node is a leaf then
3: return node.label
4: end if
5: if node.feature(χ) ≤ node.threshold then
6: return Predict(node.leftChild, χ)
7: else
8: return Predict(node.rightChild, χ)
9: end if

10: end procedure

Figure 2.3 shows the construction of a decision tree, which involves selecting the
optimal feature χopt ∈ χ and threshold value Θj to split the data at the j-th split. This
selection is performed through the optimization of a loss function that measures the
purity of resulting partitions. In this dissertation, the Gini impurity [24] is minimized
for training classification trees. For the l-th feature at the j-th split, this is expressed
as:

JGini = 1−
Nclass∑

k=1
ϕk(χl,Θj)2 , (2.33)

where 0 < ϕk(χl,Θj) ≤ 1 is the proportion of samples belonging to class k in a given
node. Thus, by minimizing JGini, the proportion of samples belonging to the correct
class (i.e., purity) is being maximized. For regression problems, the optimal split
threshold can be determined by minimizing the MSE loss (Equation (2.19)) [24]. As
summarized in Algorithm 3, the splitting of the data D at the nodes is performed
recursively until a stopping criterion is met [24]. Typical stopping criterion that are
determined via hyperparameter search include minimum number of data samples in
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Figure 2.3: Step-wise construction of a decision tree for a two-dimensional feature
space with binary classification.

a node or the depth of the decision tree.

Random forests

In relation to Equation (2.20), decision trees have low model bias but high model
variance [119]. As such, decision trees are prone to overfitting to the training data.
Since model variance is associated with sensitivities to a specific training dataset,
model variance can be reduced by forming a random forest [119], i.e., an ensemble
of decision trees that have been trained on different variations of the initial training
data.
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Algorithm 3 Pseudocode for Recursive Decision Tree Training
1: procedure GrowTree(data D, loss Jtot, depth)
2: if StoppingCondition(D, depth) then
3: return CreateLeafNode(label(D))
4: end if
5: optimal feature χopt, optimal threshold Θj ← FindBestSplit(D, Jtot)
6: Dleft,Dright ← SplitData(D, χopt, Θj)
7: leftChild ← GrowTree(Dleft, depth + 1)
8: rightChild ← GrowTree(Dright, depth + 1)
9: return CreateTreeNode(χopt, Θj, leftChild, rightChild)

10: end procedure

This process of ensembling with permutations of the training data resampled
from the initial training data is known as bootstrap aggregating or bagging. When
growing each constituent decision tree in a random forest, the set of features used in
determining the optimal threshold Θk (see Algorithm 3) is also subsampled randomly
in each tree, which ensures further variations in between the trees. Here, the number
of decision trees and feature subsample size are additional hyperparameters that are
tuned by the user.

Inference with a random forest algorithm involves collecting independent pre-
dictions from each constituent decision tree, followed by aggregating the resulting
ensemble. In classification, majority voting is a common approach to aggregating
predictions, while in regression, the mean ensemble prediction is typically employed.

2.2.6 Machine Learning Interpretability

When employing ML models, interpretability can be useful for understanding model
shortcomings, faults in code, and aid in scientific discovery [120]. Linear regression (as
discussed in Section 2.2.2) is often regarded as highly interpretable [120]. Assuming
that all features have been scaled to similar magnitudes, the magnitudes of the model
weights provides a direct relationship of the influence any given feature has on the
prediction flin(χ|Θ). Specifically, larger absolute values of a given model weight
signify that changes in the predicted outcome are more sensitive to a corresponding
feature. In NNs, this direct relationship between model parameters and data features
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is obscured during the forward pass of features across multiple non-linear hidden
layers (as described in Section 2.2.4). As such, NN and deep learning approaches
have earned a reputation for being black-box models, which are capable of providing
accurate predictions at the expense of being uninterpretable.

In contrast, CaRT approaches are known for providing a balanced trade-off be-
tween accuracy and interpretability. This is because the features and thresholds
(discussed in Section 2.2.5) used to split data samples into the models’ tree structure
can be examined to understand model behavior. One such measure of interpretabil-
ity from CaRT approaches is the feature importance score, which is often measured
through a mean decrease in impurity (MDI) that is given by [121]:

Feature Importance(χopt) =
∑

nodes using χopt
MDI

∑
all nodes MDI , (2.34)

where the MDI at a given CaRT node provides a numerical value for the effectiveness
of a given feature χopt ∈ χ in splitting the data during training (see Algorithm 3).

The MDI used for regression in this dissertation is evaluated through the reduction
in variance of labels at a given node Var(Υnode) [121]. The variance reduction by a
feature at a single node represents the improvement in homogeneity/purity of the
target variables Υ due to the split at a given node based on a particular feature, and
is calculated as follows [24]:

MDI = Var(Υparent)− (ϕleftVar(Υleft) + ϕrightVar(Υright)) , (2.35)

where ϕleft and ϕright are the proportions of the data going to the left and right child
nodes, respectively. Similarly, Υleft and Υright are the training labels that are split
into the left and right child nodes, respectively, while Υparent is the training labels
in the parent node (i.e., prior to splitting). Thus, the feature importance score in
a regression tree measures the contribution of each feature within χ to reducing the
overall variance of the target variable, reflecting how important the feature is for
generating accurate predictions within the model.
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2.2.7 Further Practical Considerations

The development of ML models is often influenced by trade-offs, as seen in Sec-
tion 2.2.6 with the discussion on the interpretability-expressiveness trade-off across
different ML approaches. The decomposition of the generalization error (Equa-
tion (2.20)) is often related to the bias-variance trade-off, i.e., the trade-off associ-
ated with model underfitting and overfitting. This trade-off often guides the practical
choices in the development of a supervised learning model, such as the treatment of
the learning data, as well as model design and selection.

Practically, high bias is associated with underfitting, when the selected ML model
is insufficiently expressive for learning a given task. For instance, shortcomings in
linear regression in modeling non-linear quantities seen within closure modeling can
be treated through the use of non-linear regressors, such as CaRTs and NNs. The
expressiveness of an NN can be increased by increasing the number of model parame-
ters within its architecture. Therefore, a straightforward approach towards addressing
underfitting issues involves the selection of more expressive and scalable approaches,
typically involving NNs or CaRT-based approaches [22].

However, a model that has too many parameters for a given task can overfit,
i.e., where the model cannot predict well on datasets that are substantially OOD
from the data seen during training because of the spurious patterns learned from an
insufficiently representative dataset. A brute-force approach for treating overfitting
can involve increasing the scale of training data, which ameliorates the tendency of
an ML model in learning spurious trends through an increased diversity of learning
data [16]. A dataset can also be synthetically generated through data augmenta-
tion [122], which increases the diversity of training data through randomized data
transformations (such as flowfield rotations, flipping, and cropping).

Another naïve approach involves reducing the number of model parameters by
reducing the number of NN layers or decision tree depth. However, this is not an
optimal approach if trends within the data are not homogeneous, i.e., when different
regimes within the data require different levels of expressiveness. The introduction
of soft constraints and assumptions to the model could offer better opportunities for
ameliorating overfitting under these mixed regime conditions [22]. For example, the
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inclusion of the l2-norm ∥Θ∥2 to the total loss Jtot is known to regularize the model
through encouraging the presence of uniform model weight distributions in NNs. This
added constraint reduces the over-reliance on any individual input in each NN layer,
which reduces the tendency of the model to learn spurious trends, while maintaining
expressiveness from a large number of model parameters. A similar principle is often
employed in many scientific ML problem in physics-informed losses [123], where loss
regularization terms associated with conservation equations can be used to constrain
NN behavior.

In order to monitor the occurrence of overfitting and underfitting during learning,
a common practice involves monitoring the objective function Jtot across representa-
tive samples of unseen data, i.e., a test set [30]. Practically, this test dataset is often
curated through randomly selecting the learning data in an approximately 80:20 ra-
tio for the training and test data, respectively [30]. Here, model parameters Θ are
tuned via an iterative optimization scheme during training, while the test data kept
separately for the sole use of evaluation. Since there are hyperparameters (such as
model type, number of ensembles, number of NN layers, and regularization approach)
that are not accounted for during training, it is also common practice to curate a val-
idation dataset by further subsampling the test set via random selection for the sole
purpose of hyperparameter tuning. This results in a typical 80:10:10 ratio for train,
validation, and test sets, respectively [30].



Chapter 3

Large Multi-Physics Flow Dataset
for Machine Learning∗

3.1 Introduction
As discussed in Chapter 1, the predictive performance of deep learning methods scales
with the volume of training data. However, the availability of datasets within multi-
physics flow domains can be limited when compared to other ML domains. In this
chapter, we directly address these gaps through the development of a large scale ML
dataset for turbulent reacting and non-reacting flows.

To this end, we present the Bearable Large Accessible Scientific Training Network-
of-datasets (BLASTNet), a cost-effective community-driven weakly centralized frame-
work that utilizes a public repository for increasing access to scientific data. With
this approach, we curate BLASTNet 2.0, a dataset with 744 full-domain samples from
34 DNS configurations, which will be the focus of this chapter. This dataset aims
to address limitations in data availability for compressible turbulent non-reacting

∗This chapter contains previously published work from Chung et al. [21], with minor modifica-
tions. W.T. Chung planned, implemented, performed, and analyzed experiments, developed the ML
dataset, and implemented ML models. B. Akoush and P. Sharma assisted in the development of
the ML dataset and implementation of ML models. A. Tamkin assisted with planning experiments.
K.S. Jung, J.H. Chen, J. Guo, D. Brouzet, M. Talei, B. Savard, and A.Y. Poludnenko contributed
to dataset development.
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and reacting flows, which are found in propulsion [124, 125], automotive [126, 127],
energy [39, 128], and environmental [129, 130] applications. BLASTNet data is po-
tentially suited for ML problems in turbulent non-reacting and reacting flows, which
can also involve inverse problems [131, 132], physics discovery [7, 133], dimensionality
reduction, regime classification, and turbulence-chemistry closure modeling [134].

In this chapter, we also demonstrate the utility of BLASTNet data for 3D SR of
turbulent flows [21]. To this end, we pre-process DNS data from BLASTNet 2.0 to
form the Momentum128 3D SR dataset for benchmarking this task. While SR via
deep learning has been subjected to numerous competition and benchmark studies
that target problems within other ML domains (such as computer vision [135–139],
3D medical imaging [140], and 3D microscopy [141]), extensive and easily repro-
ducible benchmarks on SR models for turbulent flows have not been performed prior
to this work. Within multi-physics flows, studies on ML-based SR are nascent com-
pared to these other ML domains, and have largely focused on demonstrating feasibil-
ity [44, 142–145], mostly by modifying existing image SR models with convolutional
architectures. Due to computational memory constraints, many of these studies focus
on 2D configurations [142, 143, 145], with 3D SR investigations only demonstrated
recently [44, 144].

As summarized in Figure 3.1, we:

• Curate BLASTNet 2.0, a diverse public 3D compressible turbulent flow DNS
dataset.

• Benchmark performance and cost of five 3D ML approaches [132, 146–149] for
SR with this publicly accessible dataset.

• Show that SR model performance can scale with the logarithm of model size
and cost.

• Demonstrate the persisting benefits of a popular physics-based gradient loss
term [132] with increasing model size.

In Section 3.2, we provide information on the BLASTNet 2.0 and Momentum128 3D
SR datasets. Our benchmark setup is described in Section 3.3, with results discussed
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in Section 3.4, before the conclusions in Section 3.5.
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(a) The full architecture of neural operator: start from input a. 1. Lift to a higher dimension channel space
by a neural network P . 2. Apply four layers of integral operators and activation functions. 3. Project back to
the target dimension by a neural network Q. Output u. (b) Fourier layers: Start from input v. On top: apply
the Fourier transform F ; a linear transform R on the lower Fourier modes and filters out the higher modes;

then apply the inverse Fourier transform F�1. On the bottom: apply a local linear transform W .

Figure 2: top: The architecture of the neural operators; bottom: Fourier layer.

(PINNs) (Raissi et al., 2019) aim at the latter and can therefore be computationally expensive. This
makes them impractical for applications where a solution to the PDE is required for many different
instances of the parameter. On the other hand, our approach directly approximates the operator and
is therefore much cheaper and faster, offering tremendous computational savings when compared to
traditional solvers. For an example application to Bayesian inverse problems, see Section 5.5.

Discretization. Since our data aj and uj are, in general, functions, to work with them numerically,
we assume access only to point-wise evaluations. Let Dj = {x1, . . . , xn} ⇢ D be a n-point
discretization of the domain D and assume we have observations aj |Dj 2 Rn⇥da , uj |Dj 2 Rn⇥dv ,
for a finite collection of input-output pairs indexed by j. To be discretization-invariant, the neural
operator can produce an answer u(x) for any x 2 D, potentially x /2 Dj . Such a property is highly
desirable as it allows a transfer of solutions between different grid geometries and discretizations.

3 NEURAL OPERATOR

The neural operator, proposed in (Li et al., 2020b), is formulated as an iterative architecture v0 7!
v1 7! . . . 7! vT where vj for j = 0, 1, . . . , T � 1 is a sequence of functions each taking values in
Rdv . As shown in Figure 2 (a), the input a 2 A is first lifted to a higher dimensional representation
v0(x) = P (a(x)) by the local transformation P which is usually parameterized by a shallow fully-
connected neural network. Then we apply several iterations of updates vt 7! vt+1 (defined below).
The output u(x) = Q(vT (x)) is the projection of vT by the local transformation Q : Rdv ! Rdu .
In each iteration, the update vt 7! vt+1 is defined as the composition of a non-local integral operator
K and a local, nonlinear activation function �.

Definition 1 (Iterative updates) Define the update to the representation vt 7! vt+1 by

vt+1(x) := �
⇣
Wvt(x) +

�
K(a;�)vt

�
(x)

⌘
, 8x 2 D (2)

where K : A ⇥⇥K ! L(U(D; Rdv ), U(D; Rdv )) maps to bounded linear operators on U(D; Rdv )
and is parameterized by � 2 ⇥K, W : Rdv ! Rdv is a linear transformation, and � : R ! R is a
non-linear activation function whose action is defined component-wise.

We choose K(a;�) to be a kernel integral transformation parameterized by a neural network.

Definition 2 (Kernel integral operator K) Define the kernel integral operator mapping in (2) by
�
K(a;�)vt

�
(x) :=

Z

D


�
x, y, a(x), a(y);�

�
vt(y)dy, 8x 2 D (3)

4
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W
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Activation

Figure 3.1: Summary of this chapter.

3.2 Datasets

3.2.1 BLASTNet 2.0

BLASTNet 2.0 consists of turbulent compressible flow DNS data, on Cartesian spatial
grids, generated by solving governing equations for mass, momentum, energy, and
chemical species, i.e., Equation (2.1). The BLASTNet 2.0 dataset is developed with
these properties in mind:

Fidelity All DNS data is collected from well-established numerical solvers [37, 102,
150–152] with spatial discretization schemes ranging from 2nd- to 8th-order accuracy,
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while time-advancement accuracy range from 2nd- to 4th-order. Low-order schemes
require finer discretization compared to high-order schemes, to achieve similar accu-
racy and numerical stability [153]. However, all simulations are spatially resolved to
the order of the Kolmogorov length-scale, ranging from 3.9 to 41 µm depending on the
configuration, with a corresponding temporal discretization that ensures numerical
stability.

Size and Diversity BLASTNet 2.0 contains a total of 744 full-domain samples
(2.2 TB) from a diverse collection of 34 simulation configurations: non-reacting de-
caying homogeneous isotropic turbulence (HIT) [7], reacting forced HIT [152], two
parametric variations of reacting jet flows [37], six configurations of non-reacting
transcritical channel flows [154], a reacting channel flow [36], a partially-premixed
slot burner configuration [35], and 22 parametric variations (with different turbulent
and chemical time-scales) of a freely-propagating flame configuration [155].

Community-involvement BLASTNet 2.0 consists of data contributions from six
different institutions. As mentioned in Appendix A.1, our long-term vision and main-
tenance plan for this dataset involves seeking additional contributions from members
of the broader flow community.

Cost-effective Storage, Distribution, and Browsing To circumvent Kaggle
storage constraints, we partition the data into a network of < 100 GB subsets, with
each subset containing a separate simulation configuration. This partitioned data
can then be uploaded as separate datasets on Kaggle. To consolidate access to this
data, all Kaggle download links are presented in https://blastnet.github.io, with
the inclusion of a bash script for downloading all data through the Kaggle API. In
addition, Kaggle notebooks are attached to each subset to enable convenient data
browsing on Kaggle’s cloud computing platform. This approach enables cost-effective
distribution of scientific data that adheres to FAIR principles [156], as further detailed
in Appendix A.1.
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Figure 3.2: Statistics of the specific kinetic energy ρek of each 1283 sub-volume in
the Momentum128 3D SR dataset. Note that the freely propagating flame configura-
tion [155] has 22 permutations of varying unburned Karlovitz numbers Kau and inlet
velocity Uin (normalized by laminar flame speed SL).

Consistent Format Data, generated from different numerical solvers, initially ex-
ists in a range of formats (.vtk, .vtu, .tec, and .dat) that are not readily formatted
for training ML models. Thus, all flowfield data are processed into a consistent format
– little-endian single-precision binaries that can be read via np.fromfile/np.memmap.
The choice of this data format enables high I/O speed in loading arrays. We provide
.json files that store additional information on configurations, chemical mechanisms
and transport properties. See Appendix A.2 for more data format details.

Licensing and Ethics All data is generated by the present authors and licensed
via CC BY-NC-SA 4.0. Other than the contributors’ names and institutions, no
personal-identifiable information is published in this data. No offensive content is
published with this flow physics dataset.

3.2.2 Momentum128 3D SR Dataset

BLASTNet 2.0 is further processed for training due to constraints in (i) memory and
(ii) grid properties. Currently, the single largest sample (92 GB) in BLASTNet 2.0
contains 1.3B voxels and 15 channels, which cannot fit into typical GPU memory. In
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addition, the spatial grid is stretched depending on the resolution requirements of the
flow domain. As shown in Figure 3.1, we circumvent these two issues by sampling
1283 sub-volumes of density ρ and velocity ui from the uniform-grid regions from all
BLASTNet data. This results in 12,750 sub-volume samples (427 GB). We choose
this sub-volume size to enable 32× SR (the resulting feature sub-volume is 43 which is
larger than a kernel size of 3), while maintaining a low memory footprint. In order to
develop a compressible turbulence benchmark dataset that can be easily downloaded,
we select 2,000 sub-volumes to form a 67 GB dataset that can fit into a single Kaggle
repository. To ensure that these 2,000 samples are representative of the different flows
encountered in each configuration, we:

1. Extract mean, variance, skewness, and kurtosis (statistical moments for char-
acterizing turbulence [34]) from the three velocity components of 12,750 sub-
volumes.

2. Apply k-means clustering with the elbow method (using the statistical moments
as features) to partition the sub-volumes in 18 clusters.

3. Select 2,000 samples while ensuring that the proportion of clusters are well-
balanced.

The resulting sub-volumes form the labels of BLASTNet Momentum128 3D SR
dataset. Figure 3.2 demonstrate the mean and standard deviation of the volume-
specific kinetic energy ρek, which we use to characterize all channel variables (see
Equation (2.5)). Each distinct marker represents a different simulation configura-
tion. Since flows from the same configuration possess similar statistics, the different
configurations from BLASTNet 2.0 can result in a dataset with a variety of flow
conditions. We Favre-filter and downsample the labels by 8, 16, and 32× (LES is
typically an order of magnitude coarser than DNS [34, 157]) to generate inputs for
turbulent SR. To summarize our SR dataset, at a given voxel of sample i, the channels
of each label correspond to Υi = [ρ,u1,u2,u3]⊺, while the feature channels consist of
χi = [ρ,ũ1,ũ2,ũ3]⊺. For the purpose of the present benchmark study, we further split
the 2,000 sub-volumes as follows:
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Train, Validation, and Baseline Test Sets 80:10:10 split via random selection
with a uniform distribution. The training set contains 1,382 samples, and both vali-
dation and baseline test sets contain 173 samples each.

Parametric Variation Set A 144-sample subset for model evaluation from an
unseen parametric variation configuration with approximately 15% higher mean ve-
locities and velocity fluctuations than the train, validation, and baseline test sets.

Forced HIT Set A 128-sample subset for model evaluation from an unseen flow
type (forced HIT) with 30-fold higher pressure and 34-fold lower velocity fluctuations.

3.3 Benchmark Configuration

3.3.1 ML Models and Methods

As shown in Figure 3.1, three well-studied 2D ResNet-based [114] SR models are
modified from their original repositories for 3D SR: (i) Residual-in-Residual Dense
Block (RRDB) [146], (ii) Enhanced Deep Residual SR (EDSR) [147], and (iii) Residual
Channel Attention Networks (RCAN) [148]. As discussed in Section 2.2.4, convolution
networks possess inductive biases that are suitable for problems involving spatial
grids, such as in flow physics [158, 159]. We choose to study these models due to their
differences in architecture paradigms. Specifically, RRDB employs residual layers
within residual layers; EDSR features an expanded network width; RCAN utilizes
long skip connections and channel attention mechanisms. In addition, we consider two
additional scientific ML approaches: (i) a Conv-FNO model [149], modified for SR,
and (ii) an RRDB model regularized with a physics-based loss (see Section 2.2.7). In
the Conv-FNO model, outputs of an FNO layer and a convolutional layer were added
to the outputs of each residual block in the EDSR. This modification enables us to
examine combining FNO layers with convolution blocks that have been demonstrated
to perform well in SR applications [149].
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The physics-based loss used in this chapter can be expressed as:

Jphys = (1− Λ)JMSE + ΛJgrad , where (3.1a)

Jgrad = ∆2

3NvoxNc

Nvox∑

i=1

Nc∑

j=1

3∑

k=1



(
∂Υ
∂xk

)

ij

−

 ∂Υ̂
∂xk



ij




2

, (3.1b)

for a given target Υ ∈ Υ. Nvox is the number of voxels and Nc the number of channel
variables of the output Υ̂ ∈ Υ̂. ∆ is the distance between each voxel. The gradient
terms are evaluated via a second-order central differencing scheme that is optimized
for GPU calculations. This is done on both super-resolved and ground truth fields
before inputting the gradient terms into the MSE function. This gradient term enables
the ML models to implicitly learn transport phenomena that arise in flow physics
PDEs. For example, advection in the mass conservation equation can be expressed
as:

∂ρuj
∂xj

= ρ
∂uj
∂xj

+ uj
∂ρ

∂xj
, (3.2)

which requires the gradients of all channel variables to be predicted correctly. These
arguments can also be applicable to the advection of momentum, which is the trans-
port term responsible for turbulent phenomena [34]. We employ the weighting factor
Λ = 0.99, which was determined from a hyperparameter search on RRDB models
with 2.7M number of parameters.

To investigate the scaling behavior of the model architectures, we vary the num-
ber of parameters by changing the network depth and width of RRDB, EDSR, and
RCAN models. The hyperparameters within the Conv-FNO model was first deter-
mined by comparing two approaches with the same number of parameters (3.0M): (i)
one with large number of Fourier modes, and (ii) one with deep and wide Conv-FNO
blocks. Since the approach number of modes with deep and wide Conv-FNO blocks
demonstrated better validation MSE, another hyperparameter search was performed
to determine the optimal number of Fourier modes until the GPU memory was fully
consumed at five Fourier modes. We scale the Conv-FNO in Section 3.4 by increasing



CHAPTER 3. LARGE MULTI-PHYSICS FLOW DATASET FOR ML 41

the FNO channel size, since this approach led to good scaling behavior, especially
when compared to increasing the number of Fourier modes. All other hyperparam-
eters are maintained from their original studies, with all models initialized via He
et al. [112]. To summarize, the architecture settings for RRDB, EDSR, RCAN, and
Conv-FNO are shown in Table 3.1. In this table, we list the number of residual blocks,
growth factor in RRDB blocks, the channel width, kernel size, number of FNO modes,
RCAN residual groups, and residual scaling factors – which are hyperparameters for
the model architectures.

Table 3.1: Hyperparameters of RRDB, EDSR, and RCAN models investigated in this
work.

RRDB Parameters 0.6M 0.9 M 1.4M 2.7M 4.9M 11.4M 17.8M 50.2M
Residual (RRDB) Blocks 1 1 1 1 2 5 8 23
First Channel Size 4 16 32 64 64 64 64 64
Kernel Size 3 3 3 3 3 3 3 3
RRDB Growth Factor 32 32 32 32 32 32 32 32
Residual Scaling 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
EDSR Parameters 0.5M 1.0M 1.4M 2.8M 5.1M 11.1M 17.8M 34.6M
Residual Blocks 32 32 32 32 32 32 32 32
Channel Size 14 20 24 34 46 68 86 120
Kernel Size 3 3 3 3 3 3 3 3
Residual Scaling 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
RCAN Parameters 0.5M 0.9M 1.5M 2.7M 5.1M 11.8M 16.4M 48.3 M
Residual Blocks 1 1 1 1 1 10 20 20
Channel Size 26 34 44 60 64 64 64 64
Residual Groups 1 1 1 1 1 2 3 10
Kernel Size 3 3 3 3 3 3 3 3
Residual Scaling 1 1 1 1 1 1 1 1
Conv-FNO Parameters − 0.6M 1.8M 2.6M 5.2M 9.4M 20.6M 32.9M
FNO modes − 2 2 2 2 2 2 2
FNO Channel Size − 14 20 24 34 46 68 86
Conv-FNO Blocks − 32 32 32 32 32 32 32
Convolutional Kernel Size − 3 3 3 3 3 3 3
Residual Scaling − 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Similar to other turbulent SR studies [44, 143], all models are trained with MSE
loss, unless otherwise stated. For evaluation, we select models with the best MSE
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after training for 1,500 epochs with a batch size of 64 across 16 Nvidia V100 GPUs.
With the Adam optimizer [110], learning rate is initialized at 1e-4 and halved ev-
ery 300 epochs. Both the number of training iterations and learning scheduling are
chosen to match other SR studies [146–148] and are found to be sufficient for the
SR predictions, as will be shown in Section 3.4. All other hyperparameters are main-
tained from their original studies, with He initialization [112] used on all initial model
weights. Data augmentation is performed via variants of random rotation and flip
transformations – which we modified to ensure augmented data remains consistent
with mass conservation. Specifically, this is necessary for maintaining the reflective
and rotational invariance of the divergence of momentum, after transformation. The
steps to ensure this are summarized in Figure 3.3, which demonstrates how flip and
rotation operations can still result in continuity-consistent transformations on a no-
tional 2D flowfield. These operations have been extended for 3D random flip and
rotation, which we employed during training.

1. Flip 2. Neg. sign

𝑥!

𝑥"
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Figure 3.3: Continuity-consistent augmentation on a 2D image that preserves reflec-
tive and rotational invariance of the ∂ρuj/∂xj.
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Training is performed with automatic mixed-precision from Lightning 1.6.5 [160].
Prior to training, data is normalized with means and standard deviations of density
and velocity extracted from the train set. During evaluation, this normalization re-
sulted in poor accuracy for the Forced HIT set, due to the significantly different
magnitudes of density and velocity. However, Section 3.4 will show that good perfor-
mance can be achieved when normalization is performed with the mean and standard
deviation of each distinct evaluation set. Thus, all evaluation sets are normalized
with their own mean and standard deviation, prior to testing. All 49 model varia-
tions are trained with three different seeds, resulting in a total computational cost of
approximately 15,000 GPU-hours.

3.3.2 Metrics

We compare the performance of each model by examining local and global quantities
of each sample. For the local quantities, we employ Metric = {SSIM,NRMSE}:

Metricρ,ui
≡ 1

4

[
Metric(ρ, ρ̂) +

3∑

i=1
Metric(ui, ûi)

]
, (3.3a)

Metricsgs ≡
1
3

3∑

i=1
Metric

(
∂τ sgsij

∂xj
,
∂τ̂ sgsij

∂xj

)
, (3.3b)

with ·̂ denoting an arbitrary predicted quantity. Metricρ,ui
evaluates each channel of

the predictions via macro-averaging. To measure the suitability of SR for turbulence
modeling via a priori analysis, we measure Metricsgs, which evaluates the predicted
divergence of the SGS stress.

We evaluate our models with the 3D version of the structural similarity index
measure (SSIM) [161]. SSIM is calculated by passing a sliding window of size 9×9×9
(similar to the original SSIM paper [161]) across two arbitrary quantities ϕ and ψ (at
a given voxel and channel), and evaluating their statistical quantities. Specifically,
SSIM is defined by:

SSIM(ϕ, ψ) = 1
Nw

Nw∑

i=1

(
2ϕψ + C2

1

ϕ
2 + ψ

2 + C2
1
· 2sϕψ + C2

2
s2
ϕ + s2

ψ + C2
2

)

i

, (3.4)
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with variance s2
{ϕ,ψ}, and covariance sϕψ for Nw number of sliding windows. In com-

puter vision applications with RGB images, C1 = 0.01 and C2 = 0.03 are typically
used to ensure numerical stability [161]. However, we found these values insufficient
for numerical stability in this work. Hence, we employed C1 = 0.1 and C2 = 0.3. SSIM
is a common image metric, but has also become a popular ML metric for evaluating
flow simulations due to its employment of mean, variance, and covariance quantities
– suited for evaluating the statistical nature of turbulence [34, 162, 163]. In addition,
this metric is intuitive for both readers familiar and unfamiliar with turbulent flows
– SSIM of 0 denotes dissimilar fields while SSIM of 1 denotes highly similar fields.

We also employ a conventional definition of normalized root MSE (NRMSE) for
evaluating the ML models:

NRMSE(ϕ, ψ) =
∑Nvox
i=1 (ϕi − ψi)2
∑Nvox
i=1 ϕ2

i

, (3.5)

for evaluating global physical properties predicted by the ML model by considering the
NRMSE{⟨e⟩k,ε} of turbulent dissipation rate ε (rate of conversion of turbulent kinetic
energy to heat) and volume-averaged kinetic energy ⟨e⟩k (momentum component in
energy conservation of a fixed control volume):

⟨e⟩k = 1
V

∫

V
ρek dV , (3.6a)

ε = 1
V

∫

V

τij
ρ

∂u′i
∂xj

dV , (3.6b)

with sample volume V and velocity fluctuation u′i.
In this chapter, theoretical floating point operations (FLOPs) for the ML models

is estimated via THOPs (https://github.com/Lyken17/pytorch-OpCounter) which
has been used in other studies [164, 165]. Einstein summation operations in FNO
layers were evaluated through modifying THOPS with np.einsum_path, while Fourier
and inverse Fourier transforms are estimated as 5Npoints logNpoints [33].
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Table 3.2: Comparison of SSIM of five models at three SR ratios, with tricubic
interpolation. Mean and standard deviation from three seeds are reported here. Bold
term represents best mean.

Models Baseline Test Set Param. Variation Set Forced HIT Set Size Cost
↑SSIMρ,ui ↑SSIMsgs ↑SSIMρ,ui ↑SSIMsgs ↑SSIMρ,ui ↑SSIMsgs Np ↓GFLOPs

Tricubic 8× 0.820 0.431 0.800 0.418 0.951 0.711 − 23
RRDB 8× 0.907±0.003 0.715±0.004 0.898±0.003 0.755±0.002 0.997±0.000 0.891±0.003 50.2M 1430(+ Grad. Loss) 0.936±0.003 0.802±0.003 0.929±0.001 0.825±0.001 0.998±0.000 0.944±0.005
EDSR 8× 0.928±0.004 0.748±0.012 0.916±0.005 0.775±0.010 0.999±0.000 0.937±0.005 34.6M 2122
RCAN 8× 0.928±0.000 0.753±0.002 0.916±0.001 0.778±0.001 0.999±0.000 0.941±0.003 16.4M 671
Conv-FNO 8× 0.846±0.016 0.566±0.019 0.845±0.011 0.614±0.015 0.993±0.001 0.845±0.008 33.0M 1276

Tricubic 16× 0.652 0.175 0.620 0.173 0.876 0.432 − 23
RRDB 16× 0.724±0.001 0.506±0.004 0.700±0.001 0.512±0.002 0.971±0.000 0.805±0.003 50.3M 1074(+ Grad. Loss) 0.739±0.008 0.554±0.001 0.719±0.004 0.556±0.002 0.973±0.000 0.816±0.001
EDSR 16× 0.716±0.005 0.477±0.018 0.693±0.005 0.481±0.019 0.969±0.001 0.783±0.008 37.8M 1944
RCAN 16× 0.672±0.039 0.408±0.066 0.665±0.024 0.415±0.058 0.961±0.009 0.737±0.050 17.3M 573
Conv-FNO 16× 0.629±0.020 0.343±0.027 0.640±0.013 0.355±0.022 0.951±0.006 0.690±0.022 34.6M 1068

Tricubic 32× 0.508 0.060 0.476 0.087 0.758 0.156 − 23
RRDB 32× 0.503±0.001 0.194±0.005 0.482±0.000 0.186±0.006 0.845±0.001 0.494±0.011 50.4M 1030(+ Grad. Loss) 0.505±0.001 0.184±0.009 0.483±0.001 0.188±0.002 0.850±0.000 0.516±0.012
EDSR 32× 0.502±0.004 0.173±0.006 0.481±0.002 0.187±0.004 0.845±0.001 0.463±0.005 40.9M 1921
RCAN 32× 0.473±0.006 0.168±0.007 0.469±0.002 0.185±0.005 0.837±0.003 0.448±0.012 18.2M 561
Conv-FNO 32× 0.476±0.004 0.155±0.012 0.470±0.001 0.178±0.003 0.842±0.002 0.435±0.013 36.2M 1023

3.4 Results
We summarize SSIMs of RRDB, EDSR, RCAN, and Conv-FNO in Table 3.2, along
with model parameters Np and inferencing cost (in FLOPs for a batch size of 1). The
8× SR models shown here possess the best SSIMs across different sizes for a given
model approach (see Table 3.1). Models, with the same network depth and width,
are then initialized and trained for 16 and 32× SR. For 8 and 16× SR, RRDB (with
gradient loss) performs the best across most of the metrics and evaluation sets, with
RCAN demonstrating the highest SSIMρ,ui

at 8× SR. At 32× SR, all shown models
exhibit lower SSIMρ,ui

than tricubic interpolation in the baseline test set, indicating
that SR is difficult to learn at high ratios. However, all models exhibit higher SSIMsgs

than tricubic interpolation for all SR ratios. This indicates that SR models may still
be useful for turbulence modeling at high SR ratios.

Figure 3.4, demonstrates that model predictions of specific kinetic energy ρek (a
physical quantity that combines predictions of all four channels) from all models pre-
sented in Table 3.2 increasingly lose fine turbulent structures as SR ratio increase.
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Nevertheless, when compared to tricubic interpolation, the SR models can still re-
cover the magnitudes of the energy at these SR ratios. Further results from the
NRMSE metrics evaluated on the 8× SR models are shown in Table 3.3, which also
demonstrates that all ML models significantly outperform tricubic interpolation on
baseline test and forced HIT sets. Here, gradient loss RRDB performs best in most
of the metrics. However, EDSR outperforms with NRMSE⟨e⟩k , as the gradient loss
only offers minor improvements to ⟨e⟩k.
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Figure 3.4: Specific kinetic energy ρek prediction of one sample from the parametric
variation set with models from Table 3.2.

Table 3.3: Comparison of NRMSE for five models at 8× SR ratio, with tricubic
interpolation. Mean and standard deviation from three seeds are reported here. Bold
term represents best mean.

Baseline Test Set Forced HIT Set
Models ↓NRMSEρ,ui ↓NRMSEsgs ↓NRMSE⟨e⟩k ↓NRMSEϵ ↓NRMSEρ,ui ↓NRMSEsgs ↓NRMSE⟨e⟩k ↓NRMSEϵ

(×10−2) (×10−1) (×10−4) (×10−1) (×10−3) (×10−2) (×10−6) (×10−4)

Tricubic 8× 5.09 7.51 8.89 4.33 8.82 31.12 734.55 451.68
RRDB 8× 0.92±0.01 2.46±0.04 0.39±0.10 1.16±0.00 0.19±0.01 2.15±0.08 39.83±32.51 0.74±0.29
(+ Grad. Loss) 0.60±0.00 1.41±0.01 0.41±0.17 0.54±0.01 0.13±0.01 1.23±0.17 33.77±21.44 0.55±0.17
EDSR 8× 0.86±0.04 2.30±0.15 0.29±0.06 1.10±0.06 0.10±0.01 1.67±0.25 0.60±0.24 0.21±0.03
RCAN 8× 0.86±0.00 2.31±0.01 0.32±0.01 1.14±0.00 0.09±0.00 1.39±0.11 0.62±0.05 0.23±0.02
ConvFNO 8× 1.46±0.07 4.42±0.23 0.74±0.19 1.64±0.05 0.56±0.11 6.94±0.75 163.50±191.46 3.66±2.22

Scaling behavior of RRDB is shown in Figure 3.5, which compares ground truth
and input values of ρek (shown in the first column) with 8× SR predictions from
tricubic interpolation and variations of RRDB models. For the model predictions,
the first row visualizes the specific kinetic energy ρ̂êk, while the second row shows
the error |ϵρek | = |ρ̂êk − ρek| normalized by ρekmax. Our discussion is focused on
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the predictions in the cyan box. At Np = 0.6M, RRDB is unable to reconstruct
ρek accurately. RRDB’s prediction is more accurate than tricubic interpolation at
Np = 4.9M, but spurious structures that originate from the coarse grid can be seen.
For Np = 50.2M, the model is sufficiently expressive for eliminating the spurious
structures from the flow. The addition of the gradient loss term is shown to reduce
prediction errors from RRDB 50.2M. This trend in improvement is also visible in the
bottom row, which shows the mean divergence of SGS stresses (Equation (2.10)).
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Table 3.3: Comparison of NRMSE for five models at 8◊ SR ratio, with tricubic
interpolation. Mean and standard deviation from three seeds are reported here. Bold
term represents best mean.

Baseline Test Set Forced HIT Set
Models ¿NRMSEfl,u ¿NRMSEsgs ¿NRMSEEk ¿NRMSE‘ ¿NRMSEfl,u ¿NRMSEsgs ¿NRMSEEk ¿NRMSE‘

(◊10≠2) (◊10≠1) (◊10≠4) (◊10≠1) (◊10≠3) (◊10≠2) (◊10≠6) (◊10≠4)

Tricubic 8◊ 5.09 7.51 8.89 4.33 8.82 31.12 734.55 451.68
RRDB 8◊ 0.92±0.01 2.46±0.04 0.39±0.10 1.16±0.00 0.19±0.01 2.15±0.08 39.83±32.51 0.74±0.29
(+ Grad. Loss) 0.60±0.00 1.41±0.01 0.41±0.17 0.54±0.01 0.13±0.01 1.23±0.17 33.77±21.44 0.55±0.17
EDSR 8◊ 0.86±0.04 2.30±0.15 0.29±0.06 1.10±0.06 0.10±0.01 1.67±0.25 0.60±0.24 0.21±0.03
RCAN 8◊ 0.86±0.00 2.31±0.01 0.32±0.01 1.14±0.00 0.09±0.00 1.39±0.11 0.62±0.05 0.23±0.02
ConvFNO 8◊ 1.46±0.07 4.42±0.23 0.74±0.19 1.64±0.05 0.56±0.11 6.94±0.75 163.50±191.46 3.66±2.22

Figure 3.5: Predictions from various RRDB models, showing gradual improvement
in the cyan box. TODO: change to index notation

model predictions in flow physics applications. For both SSIMs across all evaluation
sets, RCAN models demonstrate better performance than EDSR and vanilla RRDB
models for Np < 17M, but performance deteriorates after this model size. The gradi-
ent loss term improves RRDB predictions for all model parameters explored, resulting
in SSIMsgs that exceeds RCAN after Np = 1.4M for the baseline test and Paramet-
ric Variation sets. Thus, this loss term is shown to benefit moderately sized models
(Np = 50.2M) and data (67 GB), which is in contrast to the notion that physics-
based losses are mostly helpful for small models and datasets [96]. Conv-FNO is
seen to outperform the baseline tricubic prediction after approximately 20M param-
eters. FNO layers are memory-intensive due to high number of dimensions found in
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Figure 3.5: Predictions from various RRDB models, showing gradual improvement
in the cyan box.

Scaling behavior of RRDB (with and without gradient loss), EDSR, RCAN, and
Conv-FNO models are examined in Figure 3.6. SSIMsgs scales differently compared
to SSIMρ,ui

, indicating the importance of evaluating derived physical quantities from
model predictions in flow physics applications. For both SSIMs across all evaluation
sets, RCAN models demonstrate better performance than EDSR and vanilla RRDB
models for Np < 17M, but performance deteriorates after this model size. The gradi-
ent loss term improves RRDB predictions for all model parameters explored, resulting
in SSIMsgs that exceeds RCAN after Np = 1.4M for the baseline test and Paramet-
ric Variation sets. Thus, this loss term is shown to benefit moderately sized models
(Np = 50.2M) and data (67 GB), which is in contrast to the notion that physics-
based losses are mostly helpful for small models and datasets [158]. Conv-FNO is
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Figure 3.6: Scaling behavior of RRDB (with and without gradient-based loss), EDSR,
RCAN and Conv-FNO. RRDB, EDSR and Conv-FNO models continue to scale at
large model sizes.

seen to outperform the baseline tricubic prediction after approximately 20M param-
eters. FNO layers are memory-intensive due to high number of dimensions found in
the spectral convolution weights (six in total: one for batches, two for channels, and
three for Fourier modes). This memory-intensive nature has been acknowledged by
FNO’s original developers, with attempts to address this remaining an active research
pursuit [166].

For all models, both SSIMs are found to scale with log10 Np. All ResNet-based
models share similar slopes in the scaling relationship between SSIMsgs and log10Np

in the test and Parametric Variation set. However, these slopes can differ when
evaluated on another flow configuration. This is seen with the idealized flows in the
Forced HIT set, where higher SSIMs from all predictions and baseline are observed.

Figure 3.7 shows the relationship between SSIMsgs and inference cost (in FLOPs)
for the five model approaches. SSIMsgs for EDSR, RCAN, and RRDB (with gradient
loss) models scales with cost similarly, after approximately 100 GFLOPs. A steeper
scaling relationship is observed for both Conv-FNO and vanilla RRDB. Vanilla RRDB
models also do not demonstrate a strong linear relationship with log10 GFLOPs when
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Figure 3.7: Scaling behavior with cost.

tested on the Forced HIT set.

3.5 Summary
In this work, we released BLASTNet 2.0, a public 3D compressible turbulent reacting
and non-reacting flow dataset, to directly address gaps in data availability within
multi-physics flow applications. From this data, we extracted the Momentum128 3D
SR dataset, which we employed for benchmarking 3D SR models at 8, 16, and 32×
SR. SR models are shown to score well in SSIM-based metrics and capture fine tur-
bulent structures at 8× SR. For the higher SR ratios, these fine structures cannot be
captured, but the SR models can still recover the magnitude of large flow structures.
Through our scaling analysis, we demonstrated that benefits from a gradient-based
physics-based loss persist with model scale up to approximately 50M model param-
eters – providing empirical evidence that disagrees with the postulated notion that
physics-based methods are useful mostly in small model scenarios [158]. We observed
that model performance scales with the logarithm of model parameters, and that
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the scaling relationship between SSIMsgs and inference cost are similar for RRDB
(with gradient loss), EDSR, and RCAN. We also demonstrated that the choice of
model architecture can matter significantly, especially when developing small models
for real-time scientific computing applications, and that physics-based losses can im-
prove some metrics of poorly performing architectures. With this chapter, we demon-
strated that BLASTNet 2.0 can provide a rich resource for training and evaluating
ML models for scientific and engineering turbulent flows.



Chapter 4

Subgrid-scale Closure with
Interpretable Machine Learning∗

4.1 Introduction
In the previous chapter, we show that deep learning models trained on large datasets
can be highly accurate and flexible approaches for closure modeling via turbulent SR.
However, data for complex multi-physics flows, such as in real-fluids found within
propulsion systems, can be challenging to obtain, when compared to the previously
curated gas-phase configurations. Specifically, transcritical flows can be found within
high pressure rocket engines that operate under conditions that exceed the thermody-
namic critical limits of both fuel and oxidizer, and can give rise to complex behaviors
that pose challenges for numerical modeling and simulations [167], as highlighted in
Section 1.2. In this chapter, we examine opportunities provided by alternative ML
methods in developing closure models on a small transcritical flow dataset.

To this end, we perform DNS calculations of inert and reacting LOX/GCH4 non-
premixed transcritical mixtures in the presence of decaying turbulence, in order to
evaluate algebraic and ML models for predicting unclosed SGS terms for high pressure

∗This chapter contains previously published work from Chung et al. [7], with minor modifications.
W.T. Chung planned, performed, and analyzed experiments, and performed simulations. A.A.
Mishra assisted with planning experiments.
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propulsion applications. Thus, the objectives of this chapter can be summarized as
follows:

• To identify and quantify limitations of conventional algebraic SGS stresses in
transcritical flows.

• To utilize alternatives to deep learning, namely the random forest regressor and
the sparse symbolic regression, in constructing data-informed models for SGS
stresses.

• To apply these ML methods towards modeling additional SGS terms that can
arise from real-fluid effects.

The mathematical models for simulating the turbulent transcritical flows are pre-
sented in Section 4.2. Details regarding the DNS configuration are discussed in Sec-
tion 4.3. Section 4.4 describes ML methods employed in the present work. Results
from this a priori study are discussed in Section 4.5, before offering concluding re-
marks in Section 4.6.

4.2 Mathematical Models

4.2.1 Governing Equations

The governing equations that are solved in the present chapter to generate the DNS
data are the conservation equations for mass, momentum, energy, and chemical
species (see Equation (2.1)). For the flow-conditions considered in this study, a filter
width of 16∆ is equivalent to the integral length-scale. Since LES should resolve the
inertial subrange, we employ a maximum filter width of 8∆ to obtain filtered DNS.
Through a priori analysis, SGS quantities can then be extracted from the filtered
DNS and compared with approximations through algebraic and ML-based closure
models.

Here, the real-fluid thermodynamic states are modeled via the PR EoS. Since O2

and CH4 mixtures are a miscible system, where the effects of phase separation are
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not encountered due to the similarity of the critical states and molecular properties,
this transcritical configuration can be represented by a cubic EoS [168]. Figure 4.1
compares PR and ideal EoS for CH4 and O2. At the initial conditions of 120 K and
300 K for O2 and CH4, specific heat capacity evaluated from the PR EoS is in excellent
agreement with NIST data. However, it can be seen that the PR EoS overpredicts
the oxidizer density but provides accurate results for the fuel. Since this chapter
is primarily focusing on the development and assessment of a data-driven modeling
framework for the constructing SGS closures, we believe that this discrepancy is
acceptable for the present study.

In this chapter, the two-step five-species CH4-BFER mechanism [170] is em-
ployed, which was applied to investigate a supercritical gas turbine combustor at 20
MPa [171]. In DNS of trans- and supercritical combustion, reduced chemical mecha-
nisms [172, 173] have been employed to circumvent large computational costs incurred
by solving non-ideal state equations. Takahashi’s high-pressure correction [174] is
used to evaluate the binary diffusion coefficients. Since only two species are used in
the inert simulations, the binary diffusion coefficients are exact. Thermal conduc-
tivity and dynamic viscosity are evaluated using Chung’s method with high-pressure
correction [175]. For multi-species mixtures in the reacting cases, Chung’s pressure
correction is known to produce oscillations [102, 176], especially for dynamic viscos-
ity. Hence, transport properties of the mixture are evaluated through mole-fraction-
averaging, after employing Chung’s method on each individual species. A similar
approach has been applied in prior studies [56, 177].

Simulations are performed by employing an unstructured compressible finite-
volume solver [7, 102, 178]. A central scheme, which is 4th-order accurate on uniform
meshes, is used along with a 2nd-order essentially non-oscillatory (ENO) scheme.
The ENO scheme is activated only in regions of high local density variations, using a
threshold-based sensor to describe sharp interfaces present in transcritical flows. Due
to the density gradients present at trans- and supercritical conditions, an entropy-
stable flux correction technique [102] is used to dampen non-linear instabilities in
the numerical scheme. The double-flux method by Ma et al. [102] is used with a
dynamic sensor to eliminate spurious pressure oscillations. A Strang-splitting scheme
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Figure 4.1: Comparison of Peng-Robinson (PR) and ideal equations-of-states (EoS) for (a,b) oxygen
and (c,d) methane with NIST [114] data at p = 10 MPa. TODO:change font
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PR EoS
Ideal EoS
NIST

Figure 4.1: Comparison of Peng-Robinson (PR) and ideal equations-of-states (EoS)
for (a,b) O2 and (c,d) CH4 with NIST [169] data at p = 10 MPa.

is employed for time-advancement, combining a strong stability preserving 3rd-order
Runge-Kutta (SSP-RK3) scheme for integrating the non-stiff operators with a semi-
implicit scheme [179] for advancing the chemical source terms.
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4.2.2 Additional Closure Terms from Real-fluid Effects

We investigate the effects of additional non-linearities from the real-fluid EoS, by
employing an analysis similar to Huo and Yang [180] that they applied to model SGS
density. Equation (2.7) can be reexpressed with a compressibility factor ζ:

p = ρRTζ (4.1)

By rearranging and Favre-filtering, we obtain:

T̃ = p · (ρRζ)−1: (4.2)

However in the present LES solver, the Favre-filtered temperature is obtained by
inputting filtered quantities into the real-fluid EoS:

T̃ = p · [ρRζ̄(ρ, p, Ỹ )]−1 +
[
p · (ρRζ)−1: − p · (ρRζ̄)−1

]
(4.3a)

T̃ = T̃LES(ρ, p, Ỹ ) + T sgs (4.3b)

which gives rise to an SGS temperature T sgs, i.e., the second term on the right-hand-
side.

T sgs is typically neglected in ideal-gas configurations. This is often an acceptable
assumption, as shown by the ideal EoS case in Figure 4.2. In the transcritical inert
case, |T sgs|/T̃ of approximately 0.05 is observed, which is similar with observations
from another study [55]. However, T sgs becomes non-negligible for the transcritical
reacting cases, where |T sgs|/T̃ exceeds values of 0.1 in the reacting regions, where
multi-species compositions are present, and regions with high density gradient. Non-
negligible SGS EoS terms are also reported by other studies [180, 181]. This added
significance of T sgs arises from applying the filtering operation on density and multi-
species mass fractions, and then feeding the filtered quantities into a highly non-linear
equation.

Amplified non-linearities in transcritical reacting flow present an additional source
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of uncertainty in SGS modeling. To investigate this, we employ conventional algebraic
and novel data-driven methods for predicting the SGS fluxes from the LES momen-
tum equation (Equation (2.9b)). Two algebraic SGS models, namely the Vreman and
the gradient model (as described in Section 2.1.2), as well as random forest regres-
sors are evaluated. Additionally, we demonstrate the employment of random forest
feature importance scores for assisting the discovery of algebraic SGS stress models
by sparse symbolic regression. Since algebraic models for SGS temperature (Equa-
tion (4.3)) have not been developed, we then evaluate the ability of an interpretable
ML algorithm in modeling T sgs.
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Figure 4.5: Comparisons of filtered mixture fraction eZ and magnitude of normalized subgrid-scale
temperature |Tsgs|/ eT between an ideal-gas case and three transcritical cases. A filter width of
� = 8� is employed.

forests. One feature set corresponds to a domain-blind random forest RF BLIND, consisting only

of velocity, and the first and second spatial derivatives of velocity. The other set considers Galilean

invariant basis functions constructed from strain eSij and rotation eRij tensors as features, shown to

predict anisotropy well in a previous study [123]. These Galilean invariant features are used to train

the random forest RF INFORM. In order to investigate the generalizability of random forests in the

absence of a vast representative dataset, we evaluate the predictive performance of three additional

random forests RF INERT, RF DA780, and RF DA10, which are trained solely from the inert, Da

= 780, and Da = 10 cases, respectively.

In addition, we also examine the performance of random forest in predicting thermodynamic

quantities. Since SGS temperature is significant for reacting transcritical cases, training and testing

data for RF TSGS are taken from the two transcritical reacting cases.

Table 4.2: Random forests employed in this study.

Random forest RF INFORM RF BLIND RF INERT RF DA780 RF DA10 RF TSGS

Training data Inert, Da = 780, Inert, Da = 780,
Inert Da = 780 Da = 10 Da = 780, Da = 10

(t = tI) Da = 10 Da = 10
Testing data

Inert, Da = 780, Da = 10 Da = 780, Da = 10
(t = 1.5tI)

Features eSij , eSik
eSkj , eRik

eRkj , eui,
@eui

@xj
,
@2eui

@xjxk
TLES ,

@TLES

@xj
,
@2TLES

@xjxk(Input) fSik
gRkj �gRik

gSkj

Output ⌧ sgs
ij Tsgs
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Figure 4.2: Comparisons of filtered mixture fraction Z̃ and magnitude of normalized
SGS temperature |T sgs|/T̃ between an ideal-gas case and three transcritical cases. A
filter width of ∆ = 8∆ is employed.

4.3 DNS Configuration
Inert and reacting DNS are performed on a three-dimensional cubic domain, with
length L, a mixture of LOX/GCH4 shown in Figure 4.3. In this setup, a spherical
liquid O2 core, with a radius r = 0.25L, is initialized in gaseous CH4, where the
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Figure 4.2: DNS investigated at initial time t = 0 and one eddy turnover time t = tI . Isosurface
shows stoichiometric mixture fraction Z = 0.2 for the inert case.

averaged kinematic viscosity of oxygen and methane at 120 K and 300 K, respectively.

In the reacting cases, two di↵erent Damköhler numbers, Da, of 780 and 10 are investigated,

corresponding to flamelet and unsteady regimes [224], respectively. The Damköhler number is given

by the ratio of physical timescale tconv and chemical timescale tchem:

Da =
tconv

tchem
, (4.3)

where tchem = 0.412 µs is approximated from the extinction strain rate of a one-dimensional coun-

terflow di↵usion flame of a LOX/GCH4 mixture under similar conditions, and physical time is

evaluated from the eddy turnover time tconv = tI . Figure 4.3a shows that the mean temperature

hT i is lower when Da = 10 than when Da = 780, due the presence of local extinction. This is

also reflected in Figure 4.3b where the consumption of CH4 is slower in the case Da = 10 than the

case Da = 780. This decrease in temperature and composition also results in a slower decay of the

turbulence, as shown by the mean turbulent kinetic energy hTKEi, normalized by the initial TKE,

shown in fig. 4.3c.

An additional inert simulation with ideal gas law is performed to demonstrate real-fluid e↵ects

on subgrid-scale terms that can arise from the non-linearities of the Peng-Robinson EoS. For this

ideal configuration, atmospheric conditions p = 101.325 kPa at room temperature are employed,

with TCH4 and TO2 at 300 K.

In this study, analysis is performed on all cases after t = argmax(tI , tchem), which is typically done

x

z

y

Figure 4.3: DNS investigated at initial time t = 0 and one eddy turnover time t = tI .
Isosurface shows stoichiometric mixture fraction Z = 0.2 for the inert case.

radial profile of the initial condition is chosen to match inert and reacting steady one-
dimensional Cantera [182] counterflow diffusion flame calculations, solved in mixture-
fraction space and incorporating the PR EoS, under the same fuel and oxidizer con-
ditions. For the reacting cases, the initial temperature and composition profile cor-
responds to maximum strain rates (from one-dimensional flames) of 2× 105 s−1 and
2 × 106 s−1 for cases Da = 780 and Da = 10, respectively. Fuel and oxidizer tem-
peratures are set to TCH4 = 300 K and TO2 = 120 K, respectively, while the pressure
is set at 10 MPa. The laminar flame speed SL of a stoichiometric premixed flame
of SL = 0.306 ms−1 is evaluated through Cantera [182] at a pressure of 10 MPa and
initial temperature of 210 K (the average of fuel and oxidizer temperature). Note that
the critical temperature Tc and pressure Pc for oxidizer and fuel are Tc,O2 = 154.6 K
and Pc,O2 = 5.04 MPa, and Tc,CH4 = 190.6 K and Pc,CH4 = 4.60 MPa, respectively.

These operating conditions are chosen to match practical LOX/GCH4 combustors,
and were investigated in previous studies [183, 184]. Periodic boundary conditions
are used for all boundaries for the inert case. For the reacting cases, non-reflecting
pressure outlets are used in both boundaries in the x-direction, while the remaining
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boundaries are periodic.
The initial velocity profile was generated with a synthetic isotropic turbulence

generator by Saad et al. [185] with zero mean velocity, based on the von Kármán-Pao
energy spectrum:

E(κ) = Cu
′2

κI

(κ/κI)4

[1 + (κ/κI ]17/6 exp

−2

(
κ

κη

)2

 , (4.4a)

C = 1.453, (4.4b)

κI = 0.746834/lI , (4.4c)

where u′ is the fluctuating velocity, κ is the wavenumber, and κη the Kolmogorov
wavenumber. The chosen scaling constant C and large-eddy wavenumber κI are typ-
ical for isotropic turbulence [186]. In all cases, the integral length-scale lI and root
mean-squared (RMS) velocity fluctuation u′ have been chosen to produce a turbulent
Reynolds number Ret of 80, which has been computed with the averaged kinematic
viscosity of O2 and CH4 at 120 K and 300 K, respectively.

In the reacting cases, two different Damköhler numbers, Da, of 780 and 10 are
investigated, corresponding to flamelet and unsteady regimes [187], respectively. The
Damköhler number is given by the ratio of physical time-scale tconv and chemical
time-scale tchem:

Da = tconv
tchem

, (4.5)

where tchem = 0.412 µs is approximated from the extinction strain rate of a one-
dimensional counterflow diffusion flame of a LOX/GCH4 mixture under similar con-
ditions, and physical time is evaluated from the eddy turnover time tconv = tI . Fig-
ure 4.4a shows that the mean temperature ⟨T ⟩ is lower when Da = 10 than when Da
= 780, due to the presence of local extinction. This is also reflected in Figure 4.4b
where the consumption of CH4 is slower in the case Da = 10 than the case Da = 780.
This decrease in temperature and composition also results in a slower decay of the
turbulence, as shown by the mean turbulent kinetic energy ⟨TKE⟩, normalized by the
initial TKE, shown in Figure 4.4c.

An additional inert simulation with ideal gas law is performed to demonstrate
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Figure 4.3: Temporal evolution of global temperature T , mass fraction Yk, and normalized turbulent
kinetic energy TKE for two reacting cases.

for DNS of combustion under decaying turbulence in order to ensure the flow fields are independent

of initialization [182]. Instantaneous flow fields for axial velocity component u1, mixture fraction Z,

and mixture-fraction conditioned temperature T for the reacting cases at t = 0 and t = tI are shown

in fig. 4.4.

Table 4.1 summarizes the DNS cases examined in this study. The domain lengths in all direction

were chosen to be eight times the size of the integral lengthscale lI to minimize e↵ects of the boundary

conditions. The cell size � is prescribed on the order of the Kolmogorov lengthscale, ensuring that

all lengthscales are resolved. In addition, a mesh refinement study was performed, where the energy

spectra of velocity was found to converge between 1283 and 2563. Simulations for all three cases are

advanced with an acoustic CFL number of unity, corresponding to timesteps of 2.5 and 0.5 ns for

cases Da = 780 and Da = 10, respectively. The simulations were performed using 960 Intel Xeon

(E5-2698 v3) processors, and 2.3 µs and 0.6 µs of physical time could be completed in about an hour

wall clock time for cases Da = 780 and Da = 10, respectively.

Table 4.1: Summary of DNS cases.

Case Nx,y,z Lx,y,z [µm] Ret lI [µm] ⌘k [µm] � [µm] tI [µs] u0 [ms�1]

Inert 128 500 80 62.5 2.32 3.91 286 0.22
Da = 780 128 500 80 62.5 2.32 3.91 286 0.22
Da = 10 128 60 80 7.50 0.278 0.469 4.12 1.80
Ideal EoS 128 500 80 62.5 2.32 3.91 3 20.67
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Figure 4.4: Temporal evolution of global temperature T , mass fraction Yk, and nor-
malized turbulent kinetic energy TKE for two reacting cases.

real-fluid effects on SGS terms that can arise from the non-linearities of the PR
EoS. For this ideal configuration, atmospheric conditions p = 101.325 kPa at room
temperature are employed, with TCH4 and TO2 at 300 K.

In this study, analysis is performed on all cases after t = argmax(tI , tchem), which
is typically done for DNS of combustion under decaying turbulence in order to en-
sure the flowfields are independent of initialization [188]. Instantaneous flowfields for
axial velocity component u1, mixture fraction Z, and mixture-fraction conditioned
temperature T for the reacting cases at t = 0 and t = tI are shown in Figure 4.5.

Table 4.1 summarizes the DNS cases examined in this study. The domain lengths
in all direction were chosen to be eight times the size of the integral length-scale lI
to minimize effects of the boundary conditions. The cell size ∆ is prescribed on the
order of the Kolmogorov length-scale ηk, ensuring that all length-scales are resolved.
In addition, a mesh refinement study was performed, where the energy spectra of
velocity was found to converge between 1283 and 2563. Simulations for all three cases
are advanced with an acoustic CFL number of unity, corresponding to timesteps of
2.5 and 0.5 ns for cases Da = 780 and Da = 10, respectively. The simulations were
performed using 960 Intel Xeon (E5-2698 v3) processors, and 2.3 µs and 0.6 µs of
physical time could be completed in about an hour wall clock time for cases Da = 780
and Da = 10, respectively.
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(a) Case Da = 10 at initial time t = 0.

(b) Case Da = 10 at eddy turnover time t = tI .

(c) Case Da = 780 at eddy turnover time t = tI .

Figure 4.4: Axial velocity u1, mixture fraction Z, and conditional temperature T for the reacting
cases at transverse location z = 0.

4.4 Subgrid-scale models and data-driven methods

4.4.1 Real-fluid e↵ects

We investigate the e↵ects of additional non-linearities from the real-fluid equation-of-state, by em-

ploying a analysis similar to Huo and Yang [92] that they applied to model SGS density. Equa-

tion (4.1) can be reexpressed with a compressibility factor ⇣:

p = ⇢RT ⇣ (4.4)
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Figure 4.5: Axial velocity u1, mixture fraction Z, and conditional temperature T for
the reacting cases at transverse location z = 0.

4.4 ML Methods
In this chapter, we employ the random forest (as described in Section 2.2.5) as our
regression algorithm for predicting SGS stresses and SGS temperature. Table 4.2
summarizes the input/features, outputs, and data for the random forests employed in
this study. All random forests are trained with snapshots at one eddy turnover time



CHAPTER 4. SGS CLOSURE WITH INTERPRETABLE ML 61

Table 4.1: Summary of DNS cases.

Case Nx,y,z Lx,y,z [µm] Ret lI [µm] ηk [µm] ∆ [µm] tI [µs] u′ [ms−1]
Inert 128 500 80 62.5 2.32 3.91 286 0.22
Da = 780 128 500 80 62.5 2.32 3.91 286 0.22
Da = 10 128 60 80 7.50 0.278 0.469 4.12 1.80
Ideal EoS 128 500 80 62.5 2.32 3.91 3 20.67

t = tI and tested on the three cases at t = 1.5tI , to avoid issues related to overfitting
on the training set.

For SGS stresses, two different sets of feature, or inputs, are employed to train
the random forests. One feature set corresponds to a domain-blind random forest
RF_BLIND, consisting only of velocity, and the first and second spatial derivatives
of velocity. The other set considers Galilean invariant basis functions constructed from
strain S̃ij and rotation R̃ij tensors as features, shown to predict anisotropy well in a
previous study [189]. These Galilean invariant features are used to train the random
forest RF_INFORM. In order to investigate the generalizability of random forests in
the absence of a vast representative dataset, we evaluate the predictive performance
of three additional random forests RF_INERT, RF_DA780, and RF_DA10, which
are trained solely from the inert, Da = 780, and Da = 10 cases, respectively.

In addition, we also examine the performance of random forest in predicting ther-
modynamic quantities. Since SGS temperature is significant for reacting transcritical
cases, training and testing data for RF_TSGS are taken from the two transcritical
reacting cases.

Table 4.2: Random forests employed in this study.

Random forest RF_INFORM RF_BLIND RF_INERT RF_DA780 RF_DA10 RF_TSGS
Training data Inert, Da = 780, Inert, Da = 780, Inert Da = 780 Da = 10 Da = 780, Da = 10(t = tI) Da = 10 Da = 10
Testing data Inert, Da = 780, Da = 10 Da = 780, Da = 10(t = 1.5tI)
Features S̃ij, S̃ikS̃kj, R̃ikR̃kj, ũi,

∂ũi
∂xj

, ∂2ũi
∂xjxk

TLES, ∂TLES
∂xj

, ∂
2TLES
∂xjxk(Input) S̃ikR̃kj − R̃ikS̃kj

Output τ sgsij T sgs

In the present investigation, the random forest regressor implementation from the
Scikit-learn library [190] is used. Here, a random forest consisting of fifty decision
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trees is employed. The hyperparameters of the random forest are determined using a
random grid search approach with a 3-fold cross-validation set. Training is performed
once a priori, and requires 88 s of walltime with 8 CPUs, when trained on data
coarsened for three different filter sizes from a single timestep. Prediction time for a
643 dataset requires 2.4 s on a single CPU.

4.5 Results

4.5.1 Algebraic SGS Stress Models

A priori analysis is performed by comparing SGS stresses τ sgsij computed from filtered
DNS, with SGS stress modeled by the Vreman model (Equation (2.11)) and Clark’s
gradient model (Equation (2.13)). The performance of these SGS models is evaluated
through the Pearson correlation coefficient, which measures the linear correlation
between two variables. A Pearson correlation of 1 and −1 corresponds to perfectly
positive and negative linear relationships, respectively, whereas a correlation of 0
indicates a negligible linear relationship.
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In the present investigation, the random forest regressor implementation from the Scikit-learn

library [156] is used. Here, a random forest consisting of fifty decision trees is employed. The

hyperparameters of the random forest are determined using a random grid search approach with

a 3-fold cross-validation set. Training is performed once a priori, and requires 88s of walltime

with 8 CPUs, when trained on data coarsened for three di↵erent filter sizes from a single timestep.

Prediction time for a 643 dataset requires 2.4 s on a single CPU.

TODO: describe linear regression methods?

4.5 Results

4.5.1 Algebraic SGS stress models

A priori analysis is performed by comparing SGS stresses ⌧ sgs
ij computed from filtered DNS, with

SGS stress modeled by the Vreman model (eq. (2.10)) and Clark’s gradient model (eq. (2.12)).

The performance of these SGS models is evaluated through the Pearson correlation coe�cient,

which measures the linear correlation between two variables. A Pearson correlation of 1 and �1

corresponds to perfectly positive and negative linear relationships, respectively, whereas a correlation

of 0 indicates a negligible linear relationship.

Figure 4.6 presents the resulting Pearson correlation between exact and algebraically modeled

SGS stresses for three di↵erent filter widths � for all three DNS cases specified in table 4.1, at time

t = 1.5tI . For all three cases and filter sizes, negative correlations and weak positive correlations

ranging from approximately �0.6 to 0.4 are observed for the Vreman model. Negative correlations

suggest deviations from the eddy-viscosity hypothesis, which causes the Vreman model to be inef-

fective. In all three cases and three filter sizes, strong positive correlations, ranging from 0.5 to 0.95,

suggest that the gradient model is highly suitable for modeling SGS stresses in transcritical inert

and reacting flows.
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Figure 4.6: Pearson correlations between exact and algebraically modeled SGS stresses for three
di↵erent filter widths �.
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Figure 4.6: Pearson correlation between exact and algebraically modeled SGS stresses
for three different filter widths ∆.

Figure 4.6 presents the resulting Pearson correlation between exact and alge-
braically modeled SGS stresses for three different filter widths ∆ for all three DNS
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cases specified in Table 4.1, at time t = 1.5tI . For all three cases and filter sizes, neg-
ative correlations and weak positive correlations ranging from approximately −0.6 to
0.4 are observed for the Vreman model. Negative correlations suggest deviations from
the eddy-viscosity hypothesis, which causes the Vreman model to be ineffective. In
all three cases and three filter sizes, strong positive correlations, ranging from 0.5 to
0.95, suggest that the gradient model is highly suitable for modeling SGS stresses in
transcritical inert and reacting flows.
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The e↵ectiveness of the Vreman and gradient models are further assessed by examining the

conditional Pearson correlation for ⌧ sgs
1i with respect to the mixture fraction eZ at filter size � = 2�.

The mixture fraction for the reacting cases have been evaluated using Bilger’s definition. Figure 4.7a

shows that weak correlations ranging from �0.4 to 0.5 are observed throughout the inert case. In

both reacting cases in Figures 4.7b and 4.7c, the deviations from eddy-viscosity is much larger than

the inert case, as denoted by the presence of highly negative correlations (�0.8) in the Vreman

model. In the inert case, the gradient model has the highest correlation of approximately 1.0 in

pure methane and pure oxygen, and the lowest correlation of 0.6 when eZ = 0.5. For the case Da

= 780, the gradient model has the lowest correlation (0.7) close to the pure oxygen stream, with the

correlation steadily increasing as the mixture approaches stoichiometry (Zst = 0.2), after which the

correlations remain high (0.85 to 1.0). For the case Da = 10, the correlations for the gradient model

are high (0.8 to 1.0) throughout the entire mixture.

(a) Inert case. (b) Da = 780. (c) Da = 10.

Figure 4.7: Conditional Pearson correlations with respect to mixture fraction eZ between exact and
algebraically modeled SGS stresses ⌧ sgs

1i for a single filter width � = 2�.

The accuracy of the gradient model in predicting the magnitude of SGS stresses is evaluated

by examining the least squares fit between the exact and modeled SGS stresses. A slope greater

than unity indicates underprediction of the modeled SGS stresses, while a slope less than unity

indicates overprediction. Figure 4.8 shows that the slopes from the gradient model range from 1

to 4.5. The average of the slopes is 1.98, which suggests that the gradient model with a constant

coe�cient should employ Cg = 1/6, instead of the typical Cg = 1/12. However, since a wide range

of coe�cients are observed, a dynamic gradient model scheme is likely more suited in a posteriori

simulations. This is confirmed by results from a posteriori evaluations of the dynamic gradient

model from transcritical inert DNS [203].
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Figure 4.7: Conditional Pearson correlation with respect to mixture fraction Z̃ be-
tween exact and algebraically modeled SGS stresses τ sgs1i for a single filter width
∆ = 2∆.

The effectiveness of the Vreman and gradient models are further assessed by exam-
ining the conditional Pearson correlation for τ sgs1i with respect to the mixture fraction
Z̃ at filter size ∆ = 2∆. The mixture fraction for the reacting cases have been
evaluated using Bilger’s definition. Figure 4.7a shows that weak correlations ranging
from −0.4 to 0.5 are observed throughout the inert case. In both reacting cases in
Figures 4.7b and 4.7c, the deviations from eddy-viscosity is much larger than the
inert case, as denoted by the presence of highly negative correlations (−0.8) in the
Vreman model. In the inert case, the gradient model has the highest correlation of
approximately 1.0 in pure CH4 and pure O2, and the lowest correlation of 0.6 when
Z̃ = 0.5. For the case Da = 780, the gradient model has the lowest correlation (0.7)
close to the pure O2 stream, with the correlation steadily increasing as the mixture
approaches stoichiometry (Zst = 0.2), after which the correlations remain high (0.85
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to 1.0). For the case Da = 10, the correlations for the gradient model are high (0.8
to 1.0) throughout the entire mixture.

The accuracy of the gradient model in predicting the magnitude of SGS stresses
is evaluated by examining the least squares fit between the exact and modeled SGS
stresses. A slope greater than unity indicates underprediction of the modeled SGS
stresses, while a slope less than unity indicates overprediction. Figure 4.8 shows that
the slopes from the gradient model range from 1 to 4.5. The average of the slopes
is 1.98, which suggests that the gradient model with a constant coefficient should
employ Cg = 1/6, instead of the typical Cg = 1/12. However, since a wide range of
coefficients are observed, a dynamic gradient model scheme is likely more suited in a
posteriori simulations. This is confirmed by results from a posteriori evaluations of
the dynamic gradient model from transcritical inert DNS [191].
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Figure 4.8: Slopes from a least squares fit of exact and gradient modeled SGS stress for three di↵erent
filter widths �.

4.5.2 Random forest SGS stress models

The a priori analysis performed in section 4.5.1 is repeated in this section for the SGS stresses

modeled by random forest regressors. Figure 4.9 presents the Pearson correlation between exact

SGS stresses and the SGS stresses modeled by the random forests RF BLIND and RF INFORM.

Details regarding the input, output, and training of these two random forests are described in

table 4.2. Figure 4.9a shows that strong correlations (0.4 to 0.95) are observed when the random

forest is trained with an uninformed approach, which is similar to the gradient model and higher

than the Vreman model in fig. 4.6. Figure 4.9b demonstrates that the employment of invariant basis

functions as features decreases the range of correlations (0.35 to 0.9) by 0.05. This small decrease is

likely caused by the additional constraints placed on the random forest when forming a hypothesis

space.

(a) RF BLIND. (b) RF INFORM.

Figure 4.9: Pearson correlation between exact and random forest modeled SGS stresses for three
di↵erent filter widths �.

Figure 4.10 presents the Pearson correlations between exact and random forest SGS stresses
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Figure 4.8: Slopes from least squares fits of exact and gradient modeled SGS stress
for three different filter widths ∆.

4.5.2 Random Forest SGS Stress Models

The a priori analysis performed in Section 4.5.1 is repeated in this section for the
SGS stresses modeled by random forest regressors. Figure 4.9 presents the Pearson
correlation between exact SGS stresses and the SGS stresses modeled by the random
forests RF_BLIND and RF_INFORM. Details regarding the input, output, and
training of these two random forests are described in Table 4.2. Figure 4.9a shows
that strong correlations (0.4 to 0.95) are observed when the random forest is trained
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with an uninformed approach, which is similar to the gradient model and higher than
the Vreman model in Figure 4.6. Figure 4.9b demonstrates that the employment of
invariant basis functions as features decreases the range of correlations (0.35 to 0.9)
by 0.05. This small decrease is likely caused by the additional constraints placed on
the random forest when forming a hypothesis space.
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Figure 4.8: Slopes from a least squares fit of exact and gradient modeled SGS stress for three di↵erent
filter widths �.

4.5.2 Random forest SGS stress models

The a priori analysis performed in section 4.5.1 is repeated in this section for the SGS stresses

modeled by random forest regressors. Figure 4.9 presents the Pearson correlation between exact

SGS stresses and the SGS stresses modeled by the random forests RF BLIND and RF INFORM.

Details regarding the input, output, and training of these two random forests are described in

table 4.2. Figure 4.9a shows that strong correlations (0.4 to 0.95) are observed when the random

forest is trained with an uninformed approach, which is similar to the gradient model and higher

than the Vreman model in fig. 4.6. Figure 4.9b demonstrates that the employment of invariant basis

functions as features decreases the range of correlations (0.35 to 0.9) by 0.05. This small decrease is

likely caused by the additional constraints placed on the random forest when forming a hypothesis

space.

(a) RF BLIND. (b) RF INFORM.

Figure 4.9: Pearson correlation between exact and random forest modeled SGS stresses for three
di↵erent filter widths �.

Figure 4.10 presents the Pearson correlations between exact and random forest SGS stresses
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Figure 4.9: Pearson correlation between exact and random forest modeled SGS
stresses for three different filter widths ∆.

Figure 4.10 presents the Pearson correlation between exact and random forest SGS
stresses τ sgs1i conditioned to mixture fraction Z̃ at ∆ = 2∆. In the inert case, shown
in Figure 4.10a, the highest correlation from RF_BLIND of approximately 0.95 is
observed in pure CH4 and pure O2, and lowest correlation of 0.5 when Z = 0.5.
For the case Da = 780 in Figure 4.10b, RF_BLIND possesses the lowest correlation
(0.7) close to the O2 stream, with the correlation steadily increasing as the mixture
approaches stoichiometric conditions (Z̃st = 0.2), after which the correlations remain
high (0.85 to 1.0). For the case Da = 10, shown in Figure 4.10c, the correlations
for the gradient model are high (0.8 to 1.0) throughout the entire mixture. The
conditional Pearson correlation produced from RF_BLIND in all three cases are
similar qualitatively and quantitatively to correlations from the gradient model in
Figure 4.7. This suggests that RF_BLIND has approximated a function similar to
the gradient model, even when trained solely on exact SGS stresses and without any
prior knowledge of the gradient Model. The correlations from RF_INFORM share
similar qualitative behaviors as the correlations from RF_BLIND, but with up to a
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0.2 lower values.
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⌧ sgs
1i conditioned to mixture fraction eZ at � = 2�. In the inert case, shown in fig. 4.10a, highest

correlation from RF BLIND of approximately 0.95 is observed in pure methane and pure oxygen,

and lowest correlation of 0.5 when Z = 0.5. For the case Da = 780 in fig. 4.10b, RF BLIND possesses

the lowest correlation (0.7) close to the oxygen stream, with the correlation steadily increasing as

the mixture approaches stoichiometric conditions ( eZst = 0.2), after which the correlations remain

high (0.85 to 1.0). For the case Da = 10, shown in fig. 4.10c, the correlations for the gradient model

are high (0.8 to 1.0) throughout the entire mixture. The conditional Pearson correlation produced

from RF BLIND in all three cases are similar qualitatively and quantitatively to correlations from

the gradient model in fig. 4.7. This suggests that RF BLIND has approximated a function similar to

the gradient model, even when trained solely on exact SGS stresses and without any prior knowledge

of the gradient Model. The correlations from RF INFORM share similar qualitative behaviors as

the correlations from RF BLIND, but with up to a 0.2 lower values.

(a) Inert case. (b) Da = 780. (c) Da = 10.

Figure 4.10: Conditional Pearson correlations as a function of mixture fraction eZ between exact and
random forest modeled SGS stresses ⌧ sgs

1i for a single filter width � = 2�.

Figure 4.11 presents slopes from a least squares fit between the exact and the random forest SGS

stresses. Figure 4.11a shows that the slopes from RF BLIND range from 0.25 to 1.6, with an average

slope of 0.96, which demonstrates excellent agreement between modeled and exact magnitudes of

SGS stresses. The employment of invariant features leads to lower slopes (0.25 to 1.35), with an

average slope of 0.867, as presented in fig. 4.11b. The use of the invariant feature set not only leads

to lower correlations but also to an overprediction in magnitudes of SGS stresses.

Figure 4.12 compares instantaneous fields for the exact and modeled SGS stress ⌧ sgs
12 /⇢ at filter

width � = 4�. In the inert case, both SGS stresses from the gradient model and RF BLIND are in

good agreement with the exact term. For Da = 780, the gradient model is in better agreement with

the exact term than RF BLIND. This is further supported by the di↵erence in Pearson correlation

for this particular case shown by the gradient model (0.9) and RF BLIND (0.6) in figs. 4.6 and 4.9,

respectively. For Da = 10, RF BLIND predicts the magnitude of the SGS stress better than the
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Figure 4.10: Conditional Pearson correlation as a function of mixture fraction Z̃
between exact and random forest modeled SGS stresses τ sgs1i for a single filter width
∆ = 2∆.
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(a) RF BLIND. (b) RF INFORM.

Figure 4.11: Slopes from a least squares fit of exact and random forest modeled SGS stress for three
di↵erent filter widths �.

gradient model, which is also observed in the slopes shown by RF BLIND (0.9) and the gradient

model (1.5) shown in figs. 4.8 and 4.11.

Figure 4.13 presents Pearson correlations from examining the generalizability of random forests

in the presence of limited data. As presented in Table 4.2, we employ three di↵erent random forest

regressors, each trained on only one DNS case, and examine their performance when tested on the

two remaining cases. Random forest RF INERT demonstrates a similar range of correlations (0.5

to 0.85) to RF ALL when tested on the inert case with a filter size � = 2�. However, lower ranges

are observed for RF INERT when tested on the cases Da = 780 (0.4 to 0.75) and Da = 10 (0.5 to

0.9). RF DA780 also possesses a similar correlation as RF BLIND when tested on case Da = 780

(0.5 to 0.9), but worse correlations when tested on the inert case (0.4 to 0.8) and case Da = 10 (0.8

to 0.9). Lastly, RF DA10 performs similarly to RF BLIND when tested on Da = 10 (0.85 to 0.95)

but performs worse when tested on the inert (0.5 to 0.8) and Da = 780 (0.55 to 0.8) cases. These

three random forests perform as well as RF BLIND on a test set that is represented well by the

training set. However, the e↵ectiveness of random forests decreases when modeling on out-of-sample

distributions. Nevertheless, these out-of-sample predictions are more accurate than the Vreman

model, thus demonstrating a appreciable degree of generalizability.

4.5.3 Data-driven discovery of SGS stress model

In this section, we examine how the interpretability of random forests can be employed as a tool for

model discovery.

Figure 4.14 presents feature importance scores extracted from RF BLIND for ⌧ sgs
1i . For all

three SGS stresses ⌧ sgs
1i shown, the highest scores are from @eu1/@xk and @eui/@xk for three spatial

dimensions. We employ this observation to formulate a sparse symbolic regression problem (see
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Figure 4.11: Slopes from least squares fits of exact and random forest modeled SGS
stress for three different filter widths ∆.

Figure 4.11 presents slopes from least squares fits between the exact and the
random forest SGS stresses. Figure 4.11a shows that the slopes from RF_BLIND
range from 0.25 to 1.6, with an average slope of 0.96, which demonstrates excellent
agreement between modeled and exact magnitudes of SGS stresses. The employment
of invariant features leads to lower slopes (0.25 to 1.35), with an average slope of 0.867,
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as presented in Figure 4.11b. The use of the invariant feature set not only leads to
lower correlations, but also to an overprediction in magnitudes of SGS stresses.
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Figure 4.12: Comparison of exact and modeled SGS stress τ sgs12 /ρ [m2s−2] at filter
width ∆ = 4∆ at axial location x = 0.

Figure 4.12 compares instantaneous fields for the exact and modeled SGS stress
τ sgs12 /ρ at filter width ∆ = 4∆. In the inert case, both SGS stresses from the gradient
model and RF_BLIND are in good agreement with the exact term. For Da = 780,
the gradient model is in better agreement with the exact term than RF_BLIND. This
is further supported by the difference in Pearson correlation for this particular case
shown by the gradient model (0.9) and RF_BLIND (0.6) in Figures 4.6 and 4.9, re-
spectively. For Da = 10, RF_BLIND predicts the magnitude of the SGS stress better
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than the gradient model, which is also observed in the slopes shown by RF_BLIND
(0.9) and the gradient model (1.5) shown in Figures 4.8 and 4.11.

Figure 4.13 presents Pearson correlation from examining the generalizability of
random forests in the presence of limited data. As presented in Table 4.2, we employ
three different random forest regressors, each trained on only one DNS case, and
examine their performance when tested on the two remaining cases. Random forest
RF_INERT demonstrates a similar range of correlations (0.5 to 0.85) to RF_ALL
when tested on the inert case with a filter size ∆ = 2∆. However, lower ranges are
observed for RF_INERT when tested on the cases Da = 780 (0.4 to 0.75) and Da
= 10 (0.5 to 0.9). RF_DA780 also possesses a similar correlation as RF_BLIND when
tested on case Da = 780 (0.5 to 0.9), but worse correlations when tested on the inert
case (0.4 to 0.8) and case Da = 10 (0.8 to 0.9). Lastly, RF_DA10 performs similarly
to RF_BLIND when tested on Da = 10 (0.85 to 0.95) but performs worse when tested
on the inert (0.5 to 0.8) and Da = 780 (0.55 to 0.8) cases. These three random forests
perform as well as RF_BLIND on a test set that is represented well by the training
set. However, the effectiveness of random forests decreases when modeling on out-of-
sample distributions. Nevertheless, these out-of-sample predictions are more accurate
than the Vreman model, thus demonstrating an appreciable degree of generalizability.

CHAPTER 4. INTERPRETABLE ML IN SGS MODEL REGRESSION AND DISCOVERY 56

Figure 4.13: Pearson correlations between exact and random forest modeled SGS stresses, from
three di↵erent random forest regressors, for a single filter width � = 2�.

in a 25-fold reduction in dimensionality.

Figure 4.14: Fifteen feature importance scores from RF BLIND. The other fifteen features, with
importance scores less than 0.02, are not shown for brevity.

The following equations present the SGS model that resulted from applying sparse symbolic

regression:
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Figure 4.13: Pearson correlation between exact and random forest modeled SGS
stresses, from three different random forest regressors, for a single filter width ∆ = 2∆.
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4.5.3 Data-driven Discovery of SGS Stress Model

In this section, we examine how the interpretability of random forests can be employed
as a tool for model discovery.

Figure 4.14 presents feature importance scores extracted from RF_BLIND for
τ sgs1i . For all three SGS stresses τ sgs1i shown, the highest scores are from ∂ũ1/∂xk and
∂ũi/∂xk for three spatial dimensions. We employ this observation to formulate a
sparse symbolic regression problem (see Section 2.2.3):

τ sgsij

ρu′2
= fsym

(
∆
u′
∂ũi
∂xk

,
∆
u′
∂ũj
∂xk

)
(4.6)

where the independent variables consist of 2nd-order polynomial functions of the non-
dimensionalized selected features. Equation (4.6) is non-dimensionalized by density,
filter width and initial RMS velocity to ensure dimensional consistency in the final
model. This is essential for improving the dimensionality of this sparse symbolic
regression problem. Since the dimensionality scales with nd for n number of candidate
variables, as discussed in Section 2.2.3, the employment of the feature importance
score for reducing 30 candidate variables to six candidate variables results in a 25-
fold reduction in dimensionality.
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Figure 4.13: Pearson correlations between exact and random forest modeled SGS stresses, from
three di↵erent random forest regressors, for a single filter width � = 2�.

in a 25-fold reduction in dimensionality.

Figure 4.14: Fifteen feature importance scores from RF BLIND. The other fifteen features, with
importance scores less than 0.02, are not shown for brevity.
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Figure 4.14: Fifteen feature importance scores from RF_BLIND. The other fifteen
features, with importance scores less than 0.02, are not shown for brevity.

The following equations present the SGS model that resulted from applying sparse
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symbolic regression:
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The resulting model can be rewritten as:

τ sgsij ≃ ρ∆2
(
C1
∂ũi
∂x1
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+ C2
∂ũi
∂x2
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∂x3
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(4.8)

where the resulting model coefficients C{1,2,3} range from 0.102 to 0.251. Equa-
tion (4.8) is similar in form to the gradient model (Equation (2.13)), but possesses
three model coefficients instead of one. By observing that C{1,2,3} are of the same
order of magnitudes, and collapsing the three coefficients by evaluating the average
model coefficients, we recover the gradient model:

τ sgsij ≃ ρCx∆2 ∂ũi
∂xk

∂ũj
∂xk

(4.9)

where the model coefficient Cx = 0.147 is similar in value to the suggested model
coefficient of 0.167 from Section 4.5.1. This result demonstrates that the employment
of sparse symbolic regression, in conjunction with random forest feature importance
can be employed to discover an algebraic expression, similar to the effective gradient
model, for modeling SGS stresses in transcritical flows.

Since the present method relies on the random forest feature importance score,
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a statistical test must be employed to test for the effects of significant correlation
amongst the features. If multiple features in the modeling basis are significantly
correlated, they act as exchangeable surrogates for each other during the calculation
of feature importance scores. This is similar to the phenomenon of multicollinearity
in classical statistics [192]. Under such conditions, metrics such as the MDI are
susceptible to correlation bias, and can generate erroneous importance scores [193,
194]. As a note, almost all algorithms for estimating feature importance, including
Shapley additive explanations [195] exhibit such correlation bias. As an alternative,
Principal Component Analysis may be utilized to engender orthogonal bases for new
features that are independent. However, these derived features are often difficult to
ascribe physical meanings to, obfuscating their utility toward interpretability.

We utilize the Spearman correlation as a statistical test for evaluating the cor-
relation amongst the features in the modeling basis. While the Pearson correlation
is a statistical tool used for evaluating linear relationships, the Spearman correlation
evaluates the monotonicity of variables in both linear and non-linear functions, i.e.,
whether the increasing or decreasing trend is being preserved. Spearman correlations
of 1 and −1 correspond to a perfect monotonic relationship, while 0 corresponds to
a negligible monotonic relationship. Figure 4.15 shows that Spearman correlations
between different features from RF_BLIND are weak (between −0.4 and 0.4), which
indicates that the feature importance scores are not spurious.

4.5.4 SGS Temperature Model

In this section, we extend the application of the present data-driven methods towards
modeling SGS temperature. Figure 4.16 presents the Pearson correlation and slopes
from least squares fits between exact and random forest-modeled SGS temperature.
High correlations (0.7 to 0.9) and slopes ranging from 0.7 to 1.5 are observed for
all three filter widths, indicating good performance from the random forest SGS
temperature model.

Unlike the random forests for modeling SGS stresses in Section 4.5.2, the feature
importance scores from RF_TSGS do not provide physical insight due to the issue
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Figure 4.15: Spearman correlation matrix for selected features from RF BLIND. Features with
correlations less than 0.2 are not shown for brevity.

4.5.4 SGS temperature models

In this section we extend the application of data-driven methods towards modeling SGS temperature.

Figure 4.16 presents the Pearson correlation and slope from least squares fit between exact and

random forest-modeled SGS temperature. High correlations (0.7 to 0.9) and slopes ranging from 0.7

to 1.5 are observed for all three filter widths, indicating good performance from the random forest

SGS temperature model.

Unlike the random forests for modeling SGS stresses in section 4.5.2, the feature importance

scores from RF TSGS do not provide physical insight due to the issue of multicollinearity, as TLES

and its gradients are used as features. In a reacting configuration, large temperature gradients are

usually observed in a certain temperature range, and thus both these quantities can be significantly

Spearman Correlation [-]

Figure 4.15: Spearman correlation matrix for selected features from RF_BLIND.
Features with correlations less than 0.2 are not shown for brevity.

of multicollinearity, as TLES and its gradients are used as features. In a reacting con-
figuration, large temperature gradients are usually observed in a certain temperature
range, and thus both these quantities can be significantly correlated. Nevertheless,
a sparse symbolic regression problem can still be formulated without reducing the
number of independent variables, as the feature set for T sgs is three times smaller
than the feature set for τ sgsij . We repeat the sparse symbolic regression procedure
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Figure 4.16: Pearson correlation and slope from least squares fit between exact and random forest-
modeled SGS temperature, for three di↵erent filter widths �.

correlated. Nevertheless, a sparse symbolic regression problem can still be formulated without

reducing the number of independent variables as the feature set for Tsgs is three times smaller than

the feature set for ⌧ sgs
ij . We repeat the sparse symbolic regression procedure from section 4.5.3:
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where the independent variables consist of 2nd-order polynomial functions of the features from
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where lchar = �f has been chosen since a better fit is obtained when performing a least squares fit

between the exact and modeled SGS temperature. By taking the average of the model coe�cients,
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Figure 4.16: Pearson correlation and slopes from least squares fits between exact and
random forest-modeled SGS temperature, for three different filter widths ∆.

from Section 4.5.3:

T sgs = fsym

(
T̃LES, lchar
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where the independent variables consist of 2nd-order polynomial functions of the
features from RF_TSGS. Note that the independent variables are ensured to be
dimensionally consistent with T sgs by multiplying the gradients with a characteristic
length-scale lchar. This characteristic length-scale can be chosen either as the filter
width ∆ or a flame thickness δf . In the present study, δf can be extracted from the
DNS by dividing the difference between flame and inert temperature by the maximum
temperature gradient.

The following equations present the SGS temperature model that resulted from
applying sparse symbolic regression:
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where lchar = δf has been chosen since a better fit is obtained when performing the
least squares fit between the exact and modeled SGS temperature. By taking the
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average of the model coefficients, we obtain the algebraic expression:

T sgs = CT δ
2
F

T̃LES

(
∂T̃LES
∂xk

)2

(4.12)

where CT = 0.001.
Figure 4.17 presents the Pearson correlation and slopes from least squares fits

between exact and SGS temperature from the discovered algebraic T sgs model. High
correlations of approximately 0.9 are observed for ∆ = 2 and ∆ = 4, while a rea-
sonable correlation of approximately 0.5 is seen for ∆ = 8. The lower correlation
compared to RF_TSGS is likely caused by the presence of the l1-norm in Equa-
tion (2.22), which encourages less significant terms to vanish from the discovered
model. Least squares fit slopes ranging from 0.8 to 1.3 are observed for all three filter
widths.
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where CT = 0.001.

Figure 4.17 presents the Pearson correlation and slope from least squares fit between exact and

SGS temperature from the discovered algebraic Tsgs model. High correlations of approximately 0.9

are observed for � = 2 and � = 4, while a reasonable correlation of approximately 0.5 is seen for

� = 8. The lower correlation compared to RF TSGS is likely caused by the presence of the l1-norm

in eq. (2.21), which encourages less significant terms to vanish from discovered model. Least squares

fit slopes ranging from 0.8 to 1.3 are observed for all three filter widths.

Figure 4.17: Pearson correlation and slope from least squares fit between exact and algebraic-modeled
SGS temperature.

4.6 Summary

DNS of inert and reacting transcritical LOX/GCH4 non-premixed mixtures under decaying turbu-

lence were performed. Pressure and temperature were chosen to correspond to conditions in rocket

combustors to examine conditions for which commonly-employed SGS are less matured. A priori

analysis was conducted by comparing exact subgrid-scale stresses from Favre-filtered DNS data with

algebraic and data-driven SGS models.

A priori analysis showed that the SGS stresses evaluated by Vreman SGS model correlated

poorly with the corresponding exact terms. In contrast, good correlations are seen from the gradient

SGS model. Results demonstrated a wide range of magnitude errors in the gradient model, which

suggests that a dynamic gradient model approach is suited in a posteriori simulations. Random

forests demonstrated high correlations when trained on datasets which are representative of the test

sets, with reasonable predictions for the magnitude of subgrid-scale stresses. However, correlations

were shown to decrease significantly when tested out-of-sample.

Sparse symbolic regression was performed to discover an algebraic expression for SGS stresses

from non-linear transformations of velocity and its derivatives. The interpretability of random
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Figure 4.17: Pearson correlation and slopes from least squares fit between exact and
algebraic-modeled SGS temperature.

4.6 Summary
This chapter explores random forest regressors and sparse symbolic regression ap-
proaches in modeling SGS closure in a small transcritical flow dataset. To this end,
DNS of inert and reacting transcritical LOX/GCH4 non-premixed mixtures under
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decaying turbulence were performed. Pressure and temperature were chosen to corre-
spond to conditions in rocket combustors to examine conditions for which commonly-
employed SGS are less matured.

A priori analysis was conducted by comparing exact SGS stresses from Favre-
filtered DNS data with algebraic and data-driven SGS models. This analysis showed
that the SGS stresses evaluated by Vreman SGS model correlated poorly with the
corresponding exact terms. In contrast, good correlations were observed from the
gradient SGS model. Results demonstrated a wide range of magnitude errors in the
gradient model, which suggests that a dynamic gradient model approach is suited in a
posteriori simulations. Random forests demonstrated high correlations when trained
on datasets which are representative of the test sets, with reasonable predictions
for the magnitude of SGS stresses. However, correlations were shown to decrease
significantly when tested out-of-sample.

Sparse symbolic regression was performed to discover an algebraic expression for
SGS stresses from non-linear transformations of velocity and its derivatives. The
interpretability of random forests was demonstrated to reduce the dimensionality
of the sparse symbolic regression problem by 25 times, by employing the feature
importance score for variable selection. The derived algebraic expression was shown
to be similar to the gradient model.

Sparse symbolic regression was also performed to evaluate SGS temperature, a
term which emerges from filtering the non-linear real-fluids EoS. The discovered al-
gebraic expression demonstrated reasonable correlations and magnitudes when pre-
dicting SGS temperature. A random forest SGS temperature model was shown to
perform better than the algebraic model.

Results demonstrated that random forests can perform as effectively or better as
suitable algebraic models when modeling SGS stresses, if trained on a sufficiently
representative database. However, in the absence of such a database, this good per-
formance was not replicated. Nevertheless, the employment of random forests can
provide insight into the discovery of SGS models via symbolic regression through the
feature importance score, as long as features are not significantly correlated.



Chapter 5

Classification within a Reacting
Flow Solver∗

5.1 Introduction
In the previous chapter, we discussed results that highlighted potential OOD errors
in ML-based predictions when trained on insufficiently representative data. These
errors can introduce stability issues when integrating ML methods within numerical
multi-physics flow solvers. The present chapter presents a strategy for ameliorat-
ing this issue by employing a classification algorithm that assigns well-tested domain
knowledge-based combustion submodels (as discussed in Section 1.2) of varying fi-
delity and complexity within a shared simulation domain. Thus, the potential ap-
proximation errors made by the ML algorithm are limited by the predictive capability
of the lowest performing submodel.

In the approach that is proposed in this work, local thermo-physical quantities
in the flowfield are utilized as features for a random forest algorithm that spatially
and dynamically assigns combustion submodels. Errors made by submodels, when
predicting user-defined QoI, are used to construct the labels used for training random

∗This chapter contains previously published work from Chung et al. [9], with minor modifications.
W.T. Chung planned, performed, and analyzed experiments, and performed simulations. A.A.
Mishra assisted with planning experiments. N. Perakis assisted in performing simulations.
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forest models. Overall computational fidelity and cost of the simulation is determined
by a user-defined submodel error threshold during training. This approach couples
the assigned combustion submodels in the a posteriori simulations by employing the
mass-conserving approach developed by Wu et al. [69].

To summarize, this chapter involves the following objectives:

• To integrate ML-based classification models for combustion submodel assign-
ment within a reacting flow physics solver, and assess the resulting DA simula-
tions.

• To evaluate the suitability, accuracy, and adjustability of random forests for
submodel assignment.

To this end, we evaluate this ML-based approach on simulations of a GOX/GCH4

single-element rocket combustor [196]. Methods for simulating this turbulent react-
ing flow configuration are discussed in Section 5.2. The experimental configuration,
computational setup and baseline simulations using monolithic combustion models
are discussed in Section 5.3. The data-driven framework is introduced in Section 5.4.
Results from a priori and a posteriori assessments of the random forest models are
presented and discussed in Section 5.5, before offering concluding remarks in Sec-
tion 5.6.

5.2 Mathematical Models

5.2.1 Governing Equations

The governing equations that are solved in the present chapter for the LES are
the Favre-filtered conservation equations for mass, momentum, energy, and chemi-
cal species (see Equation (2.9)). The combustion models that are employed in the
present study are described in detail in Section 5.2.2.

Simulations are performed by employing an unstructured compressible finite-
volume solver [69, 102, 178]. A central scheme, which is 4th-order accurate on
uniform meshes, is used along with a 2nd-order ENO scheme. The ENO scheme
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is activated only in regions of high local density variation using a threshold-based
sensor. A Strang-splitting scheme is employed for time-advancement, combining a
strong stability preserving 3rd-order Runge-Kutta (SSP-RK3) scheme for integrating
the non-stiff operators with a semi-implicit Rosenbrock-Krylov scheme [179] for ad-
vancing the chemical source terms. The dynamic Smagorinsky model [48] is used as
closure for the SGS stresses. Turbulence/chemistry interaction is accounted for using
the dynamic thickened-flame model [52], employing a maximum thickening factor of
3, which is estimated through 1D flame calculations a priori. Outside the flame re-
gion, both turbulent Prandtl and Schmidt numbers are prescribed at constant values
of 0.7.

5.2.2 Combustion Models

In this chapter, we perform LES calculations that employ three different combustion
submodels, namely the FRC model, the FPV model [53, 54], and IM model. The
FRC model is defined by solving the species transport equation, Equation (2.9d),
through direct integration. This method does not rely on strong assumptions on
flame structure and is suitable for representing complex flows as well as intermediate
species and unsteady effects. Despite the high-fidelity offered by FRC, since the cost
of evaluating the chemical source terms scale linearly with the number of species, the
utilization of a large chemical mechanism can be prohibitively costly. FPV approach
aims to alleviate the computational cost of combustion chemistry by representing the
thermochemical state space using a low-dimensional manifold based on flamelets, a
series of one-dimensional diffusion flames. FPV relies on the observation that laminar
diffusion flames are weakly affected by the presence of turbulence, which allows the
turbulent diffusion flame to be represented by flamelets. While FPV is computa-
tionally efficient, it assumes adiabaticity and cannot model effects of heat-flux across
boundaries well. Lastly, IM models can only consider mixing without combustion
chemistry.

The representation of transported chemical scalar Φk between FRC and the two
tabulated chemistry models is dissimilar: FRC uses a chemical state-vector Ỹk =
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[Ỹ1, . . . , ỸNS
]T , consisting of NS number of chemical species, while the FPV and IM

state-vector is represented in terms of a low-dimensional manifold Ỹk = M(Φ̃Kk ),
where Φ̃Kk is the state vector that is used to parameterize the manifolds in models K =
{FPV, IM}. With the flame being artificially thickened as discussed in Section 5.2.1,
FPV is parameterized by the mixture fraction and progress variable Φ̃FPV

k = [Z̃, C̃]T ,
which differs from the conventional practice of using a presumed-PDF closure [69].
The progress variable is defined as a linear combination of species mass fractions
of combustion products (carbon dioxide, water, carbon monoxide, and hydrogen,
respectively) [197]: C = YCO2 +YH2O +YCO +YH2 . For an inert and adiabatic mixture,
the thermochemical state is fully parameterized by a single scalar, Φ̃IM

k = [Z̃].
The present framework resolves the discrepancy in scalar representation when cou-

pling different combustion models with the approach developed by Wu et al. [69]. In
this approach, a transport equation for mixture fraction is solved holistically in all
models. Reconstruction of the chemical state-vector needed for FRC involves inter-
polation from the chemistry tables that stores all species, whereas the reconstruction
of the progress variable needed for tabulated chemistry involves the sum of all major
combustion product species: CO2, CO, H2O, and H2. To ensure consistency between
the submodels, the aforementioned reconstruction is applied for the inactive com-
bustion model at the submodel interface at every timestep. Since the conservation
laws for mass, momentum, and energy are universal among all combustion submod-
els, these properties are conserved throughout the domain. In addition, the choice of
the dynamically-thickened flame model for the FRC and both manifold-based models
avoids potential complications, since this closure model has been successfully applied
to previous non-premixed flame simulations employing FRC and tabulated chemistry
models [69, 198, 199].

The GRI-3.0 model [200], involving NS = 33 chemical species, is used to describe
the reaction chemistry in all combustion models. FRC is incorporated into the LES
solver using the Cantera library interface [182]. The molecular diffusion of chemical
species is modeled with constant Lewis numbers, which are calculated at equilibrium
condition of a stoichiometric CH4 and O2 mixture. The chemistry table employed in
the FPV-model is constructed from the solution of steady-state counterflow diffusion
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flames that are solved in composition space [201].

5.3 Configuration

5.3.1 Experimental Configuration

To evaluate the merit of the classification method, we perform simulations of a single-
element GOX/GCH4 rocket combustor [196]. The experimental configuration consists
of a co-axial injector element where the oxidizer flows through a central jet with
diameter do = 4 mm and the fuel is injected via an annulus with inner and outer
diameters df,i = 5 mm and df,o = 6 mm. The combustion chamber with a total
length of 285 mm has a cylindrical shape with diameter dch = 12 mm. A conical
nozzle is attached at the end of the combustion chamber, having a contraction ratio
of 2.5. This setup results in a Mach number of approximately 0.25 in the combustion
chamber, which is similar to typical flight configurations. The combustor operates
at a nominal operating pressure of 20 bar and a global oxidizer-to-fuel ratio of 2.6,
with mass flow rates of oxidizer ṁo and fuel ṁf measured at 34.82 g/s and 13.39 g/s,
respectively. The temperature of the oxidizer and the fuel supplied at the injector inlet
are To = 275 K and Tf = 269 K. Static wall pressure and wall heat flux are measured
through thermocouples and pressure transducers, installed along the chamber wall.

5.3.2 Computational Setup

In this model-assignment problem, we consider an axisymmetrical domain that is
representative of the single-element GOX/GCH4 rocket combustor, as shown in Fig-
ure 5.1. The domain consists of a 3◦ combustor sector, with a truncation at 0.4 mm
to remove the singularity at the centerline. Axisymmetric simulations of rocket com-
bustors have been frequently employed to obtain insight in the turbulent combustion
process [202, 203], while offering feasible computational costs. This was found to be
crucial for the exploration of a wider range of parameters in the DA method, espe-
cially with the use of a detailed FRC-model consisting of 33 chemical species in the
present study.
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Figure 5.1: Computational domain presented in conjunction with instantaneous temperature (top)
and axial velocity (bottom) fields from monolithic FRC simulations.

5.3.3 Baseline results from monolithic LES combustion simulations

Simulations of the rocket combustor are first performed using monolithic FRC and monolithic FPV

simulations. Flow fields are initialized with equilibrium products and temperature, thus allowing

the monolithic FPV simulation to ignite. Instantaneous and time-averaged fields of temperature,

CO mass fraction, and mixture fraction from monolithic FRC calculations and monolithic FPV

simulations are shown in figs. 5.2a and 5.2b, respectively. Results from the FRC simulations are

qualitatively similar to previous simulations [239, 158], where a non-uniform mixture fraction field,

a long oxygen core, and an agglomeration of cold rich gases to the chamber wall are observed. In

contrast, some notable di↵erences are observable from the FPV simulations, shown in fig. 5.2b.

In particular, a thicker thermal boundary layer is seen for the FPV simulation. This di↵erence

is consistent with other LES studies [134] which have shown that an adiabatic FPV model, as

employed in the present study, mispredicts the wall-heat loss and exothermic CO-recombination in

the boundary layer [158].

5.4 Data-assisted simulation framework

TODO:make notation consistent with chap 2 In the present data-driven framework, the procedure

for incorporating a supervised learning algorithm for combustion submodel assignment is as follows:

1. Generate data either from experimental measurements or numerical simulations. In this work,

we use the instantaneous flow-field solutions from the FRC simulation of the GOX/CH4 rocket

combustor as the learning dataset, discussed in section 5.3.
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Figure 5.1: Computational domain presented in conjunction with instantaneous tem-
perature (top) and axial velocity (bottom) fields from monolithic FRC simulations.

At the inlets, the fuel and oxidizer mass flow rates and temperature are prescribed
following the experimental measurements [196]. At the chamber and nozzle walls, the
temperature profile is defined as a Dirichlet boundary condition, which is obtained
from the measurements by Perakis and Haidn [204]. The bottom and axisymmetric
faces are prescribed with symmetry boundary conditions. All remaining boundaries
are defined as adiabatic non-slip walls, except the exhaust (which is modeled as a
pressure outlet). The computational domain is discretized by a block-structured
mesh consisting of 2 × 105 cells. The wall-normal direction is resolved down to 30
µm, and a wall model [205] is employed for the viscous sublayer. Simulations are
performed using 600 Intel Xeon (E5-2680v2) processors. The solution is advanced
using a typical timestep of 25 ns, corresponding to a convective CFL number of 1.0.

5.3.3 Baseline Results from Monolithic Combustion LES

Simulations of the rocket combustor are first performed using monolithic FRC and
monolithic FPV simulations. Flowfields are initialized with equilibrium products and
temperature, thus allowing the monolithic FPV simulation to ignite. Instantaneous
and time-averaged fields of temperature, CO mass fraction, and mixture fraction
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(a) Monolithic FRC simulation.

(b) Monolithic FPV simulation.

Figure 5.2: Temperature, CO mass fraction, and mixture fraction fields (from top to bottom) for
(a) monolithic FRC and (b) monolithic FPV simulations. Upper half: instantaneous fields, bottom

half: time-averaged fields. The location of the stoichiometric mixture, eZst = 0.2, is shown by black
lines. TODO: change italics

2. Assign labels to the training data. Prior to training, each training datapoint is typically

assigned a true response. In this work, we present a multi-class classification problem for

optimal assignment of three combustion models with labels:

⌥ik =

8
<
:

1, if sample i belongs to the class k

0, otherwise
, (5.1)

where k = 1, 2, and 3 corresponds to IM, FPV, and FRC combustion models, respectively.

Hence, we use the local combustion submodel error of two essential local QoIs, namely T and

YCO, to programmatically assign labels. Details are presented in Section 5.4.1.
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Figure 5.2: Temperature, CO mass fraction, and mixture fraction fields (from top
to bottom) for (a) monolithic FRC and (b) monolithic FPV simulations. Upper
half: instantaneous fields, bottom half: time-averaged fields. The location of the
stoichiometric mixture Z̃st = 0.2 is shown by black lines.

from monolithic FRC calculations and monolithic FPV simulations are shown in Fig-
ures 5.2a and 5.2b, respectively. Results from the FRC simulations are qualitatively
similar to previous simulations [202, 206], where a non-uniform mixture fraction field,
a long oxidizer core, and an agglomeration of cold rich gases to the chamber wall are
observed. In contrast, some notable differences are observable from the FPV simula-
tions, shown in Figure 5.2b. In particular, a thicker thermal boundary layer is seen
for the FPV simulation. This difference is consistent with other LES studies [207]
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which have shown that an adiabatic FPV model, as employed in the present study,
mispredicts the wall-heat loss and exothermic CO-recombination in the boundary
layer [206].

5.4 ML Methods
In the present data-driven framework, the procedure for incorporating a supervised
learning algorithm (see Section 2.2.1) for combustion submodel assignment is as fol-
lows:

1. Generate data either from experimental measurements or numerical simulations.
In this work, we use the instantaneous flowfield solutions from the FRC simu-
lation of the GOX/GCH4 rocket combustor as the learning dataset, discussed
in Section 5.3.

2. Assign labels to the training data. Prior to training, each training data point
is typically assigned a target response. In this work, we present a multi-class
classification problem for optimal assignment of three combustion models with
labels:

Υk =





1, if the sample belongs to the class k

0, otherwise
, (5.1)

where k = 1, 2, and 3 corresponds to IM, FPV, and FRC combustion models,
respectively. Hence, we use the local combustion submodel error of two essential
local QoIs, namely T and YCO, to programmatically assign labels. Details are
presented in Section 5.4.1.

3. Construct the feature vector. In this work, we apply a feature selection method
based on the Maximal Information Coefficient (MIC) [208], as discussed in Sec-
tion 5.4.2, to construct a feature set consisting of local thermophysical quantities
χ = [Z̃, C̃, ρ, T̃ ,Pr∆, ∥∇Z̃∥2]⊺ that include the mixture fraction, progress vari-
able, density, local Prandtl number, and Euclidean norm of the mixture fraction
gradient for a given sample.
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4. Train, validate, and test the classification algorithm. In this work, a random
forest classifier (see Section 2.2.5) is used for combustion submodel assignment.

5.4.1 Label Assignment

We present a multi-class classification problem for optimal assignment of three com-
bustion models K = {IM, FPV, FRC}. In this problem, we consider the FRC model
as the combustion model of highest fidelity but at the expense of highest compu-
tational cost. Hence, regions with local scalar predictions by IM and FPV models
that match those of FRC can be considered optimally assigned. Therefore, we assign
labels in the training set based on the normalized combustion submodel error ϵKQ of
QoI α ∈ Q between FRC and the models of lower fidelity [68]:

ϵKQ =
∑

α∈Q
Θα
|αFRC − αK|
∥αFRC∥∞

with K ∈ {FPV, IM} , (5.2)

where the error for considering N number of QoIs is a weighted linear combination
of each individual submodel error. The weights for each QoI Θα are subject to the
following constraints: ∑N

α∈Q Θα = 1 and Θα ≥ 0. In this study, the use of temperature
and mass fractions of CO and OH as QoIs. In the combined use of both temperature
and CO mass fraction, Q = {T̃ , ỸCO}, both QoIs are equally weighted: ΘT = 0.5 and
ΘCO = 0.5. Similarly, for the combined use of three QoIs Q = {T̃ , ỸCO, ỸOH}, all QoIs
are equally weighted: ΘT = 0.33, ΘCO = 0.33, and ΘOH = 0.33. Temperature T̃ is
chosen as a proxy to describe the combustion efficiency and engine performance. The
CO mass fraction ỸCO is chosen to challenge the deficiencies of tabulation methods
in capturing intermediate species [69]. OH mass fraction ỸOH is selected since radical
formation is essential in combustion phenomena.

FRC data is used to reconstruct FPV and IM QoIs α ∈ Q by interpolating the
generated flamelet tables using reconstructed values of mixture fraction and progress
variable:

αK ≈MK
table(Z̃FRC, C̃FRC) where K ∈ {FPV, IM} . (5.3)

The mixture fraction is computed using Bilger’s definition [209], while the progress
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variable is computed using the sum of major combustion products, as described in Sec-
tion 5.2.2. We must note that since αK is reconstructed from FRC data, the resulting
error metric ϵKQ is an approximation of the true errors between FRC and tabulated
chemistry. However, the use of this error metric is well-justified since Bilger’s mixture
fraction and the sum of major combustion products are robust quantities for bridging
FRC and tabulated methods. Labels are assigned programmatically, as demonstrated
in Algorithm 4. In this algorithm, a model of higher fidelity is assigned when the QoI
submodel error ϵKQ exceeds a user-defined threshold θKQ, with FRC chosen when all
conditions for selecting FPV and IM are not met. While θFPV

Q and θIM
Q can be as-

signed distinct values, throughout this study we will explore cases that use the same
threshold for both IM and FPV, i.e., θIM

Q = θFPV
Q = θQ for simplicity.

Algorithm 4 Assigning labels in the training set
1: if ϵIM

Q < θIM
Q then

2: use inert mixing (IM)
3: else if ϵFPV

Q < θFPV
Q then

4: use tabulated chemistry (FPV)
5: else
6: use finite-rate chemistry (FRC)
7: end if

5.4.2 Feature Selection

Adding uninformative features to the learning dataset can reduce accuracy and com-
putational efficiency of learning algorithms [107]. Carrying out appropriate feature
selection beforehand can improve the interpretability of the predictions of the trained
model. To this end, feature selection can be used for identifying the most descriptive
and discriminative features from the raw dataset to use as inputs for our learning al-
gorithms. In this work, we select features from local quantities and group parameters
that can characterize the reacting flow, combustion state, and turbulence.

For feature selection, we rely on the Maximal Information-based Non-parametric
Exploration (MINE) tools [208] that utilize mutual information between variable pairs
to ascertain the strength of relationships between variables based on instantaneous
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flowfield representations from a monolithic FRC simulation. MINE utilizes MIC to
ensure (i) generality, where the association between the variables are not limited to
a particular form such as linear associations, and (ii) equitability, where the effect of
noise on different relationships is similar.
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Figure 5.3: Comparison between Maximum Information Coefficient (MIC) and Pear-
son’s Correlation Coefficient (Pearson r) for (a) near-linear scatter points, and (b,c)
non-linear scatter points.

While Pearson’s correlation has been utilized to ascertain the strength of rela-
tionships between variables in scientific applications, this does not account for any
non-linear relationships. This is illustrated in Figure 5.3, where Pearson’s coefficient,
or Pearson r, is compared to MIC for different scatter points. As can be seen in
Figure 5.3a, for linear relationships with noise, both coefficients are similar. How-
ever, in Figures 5.3b and 5.3c, non-linear associations between variables are ignored
by Pearson’s correlation coefficient while MIC is able to account for such complex
relationships. Mutual-information-based measures that ensure generality and equi-
tability, like MIC, can be used to compare different features, rank them and select
subsets of the most descriptive and discriminative features. Additionally, such mutual
information based feature selection is model agnostic and can be used across different
ML models, as a pre-processing step. In this vein, MIC measure has been utilized for
feature selection in prior works with success [210].

Figures 5.4a and 5.4b show MIC scores relating 16 potential features with IM
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should be subject to further study.
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Figure 5.4: Maximal information coe�cient score for features and model error. TODO: maybe
remove

5.4.3 Random forest classifier

In this study, we employ the random forest as our classification algorithm. In the present investi-

gation, the random forest classifier from the OpenCV library [22] is used. Classification cost scales

with the number of trees, tree depth and the number of training points [24]. Hence, a random for-

est consisting of twenty decision trees, and maximum depth of ten nodes is employed. Additionally,
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model error ϵIM
{T,CO} and FPV model error ϵFPV

{T,CO}, respectively. These 16 poten-
tial features consist of thermophysical quantities and dimensionless quantities that
characterize each cell within the domain. Dimensionless quantities include the local
Prandtl number, Pr∆ = ν̃/D̃T , comparing the local ratio of viscosity and thermal
diffusivity, and the local Reynolds number, Re∆ = ∆|ũ|/ν, which is the ratio of iner-
tial forces and viscous force within each cell and ∆ denotes the characteristic length
of each computational cell. It can be seen that the MIC scores for ϵFPV

{T,CO} are much
lower than for ϵIM

{T,CO}. This indicates that it is more challenging to form statistical
relationships between features and FPV model errors than for IM model error. This
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observation is consistent with the intuition that it is much easier to identify failure
of the IM models than the shortfall of the FPV model.

In the following, the top five features from both MIC tests are used to con-
struct the feature set consisting of mixture fraction, progress variable, density, lo-
cal Prandtl number, and Euclidean norm of the mixture fraction gradient: χ =
[Z̃, C̃, ρ, T̃ ,Pr∆, ∥∇Z̃∥2]⊺. The inclusion of Pr∆ in the feature set is unexpected, since
Pr∆ is approximately constant and has weak temperature dependence. However,
given that Pr∆ is slightly higher in fuel and oxidizer when compared to combustion
products, small variations within flowfield prove useful for the random forests. We
note that the data-driven framework in this study presently restricts the construction
of feature and label sets to local quantities for simplicity.

5.4.3 Random Forest ClassifierCHAPTER 5. CLASSIFICATION IN ENABLING IN-SIMULATION PREDICTIONS 72
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Figure 5.5: Application of random forest classifier for combustion submodel assignment of a single
element GOX/GCH4 rocket combustor. TODO make consistent notation with Chap 2

1⇥104 training points have been randomly sampled from a single LES snapshot consisting of 2⇥105

cells. A similar approach is used in other supervised learning problems [228]. We must note that

the flow in the present configuration is statistically stationary, and thus training data from a single

snapshot was found to be su�cient for representing the thermophysical behavior of the combustor.

The number of trees, tree depth, and the number of training points are determined a priori by

ensuring that the classification performance remains unchanged on a validation set. Training is

performed once a priori, and requires 530 ms of walltime with 1 CPU. In a posteriori simulations,

random forest evaluations for 2⇥105 cells at each timestep require 1 ms of wall time with 600 CPUs.

5.5 Results

This section assesses the random forest classifier as a method for combustion submodel assignment

in data-assisted simulations. A priori assessment is performed first to investigate the behavior of

random forests when targeting di↵erent QoIs. This is followed by an a posteriori assessment to

study improvements in target QoIs and other quantities that result from the use of random forests

in transient data-assisted simulations. Table 5.1 summarizes the eight cases, with di↵erent QoIs

and combustion submodel error threshold values ✓Q, explored in both a priori and a posteriori

assessment.

Train ML model
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forest classifier (see Section 2.2.5) is used for combustion submodel assignment.

5.4.1 Label assignment

TODO:make notation consistent with chap 2 We present a multiclass classification
problem for optimal assignment of three combustion models K = {IM, FPV, FRC}.
In this problem, we consider the FRC model as combustion model of highest fidelity
but at the expense of highest computational cost. Hence, regions with local scalar
predictions by IM and FPV models that match those of FRC can be considered
optimally assigned. Therefore, we assign labels in the training set based on the
normalized combustion submodel error ‘KQ of quantities of interest – œ Q between
FRC and the models of lower fidelity [217]:

‘KQ =
ÿ

–œQ
�–

|–FRC ≠ –K|
Î–FRCÎŒ

with K œ {FPV, IM} , (5.2)

where the error for considering N quantities-of interest is a weighted linear combina-
tion of each individual submodel error. The weights for each QoI �– is subject to the
following constraints: qN

–œQw– = 1 and w– Ø 0. In this study, the use of temperature
and mass fractions of CO and OH as QoIs. In the combined use of both temperature
and CO mass fraction, Q = { ÂT , ÂYCO}, both QoIs are equally weighted: wT = 0.5 and
wCO = 0.5. Similarly for the combined use of three QoIs Q = { ÂT , ÂYCO, ÂYOH}, all QoIs
are equally weighted: wT = 0.33, wCO = 0.33, and wOH = 0.33. Temperature ÂT is
chosen as a proxy to describe the combustion e�ciency and engine performance. The
CO mass fraction ÂYCO is chosen to challenge the deficiencies of tabulation methods in
capturing intermediate species [219]. OH mass fraction ÂYOH is selected since radical
formation is essential in combustion phenomena.

FRC data is used to reconstruct FPV and IM quantities of interest – œ Q by inter-
polating the generated flamelet tables using reconstructed values of mixture fraction
and progress variable:

–K ¥ –Ktable( ÂZFRC, ÂCFRC) where K œ {FPV, IM} . (5.3)
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(a) Monolithic FRC simulation.

(b) Monolithic FPV simulation.

Figure 5.2: Temperature, CO mass fraction, and mixture fraction fields (from top to bottom) for
(a) monolithic FRC and (b) monolithic FPV simulations. Upper half: instantaneous fields, bottom

half: time-averaged fields. The location of the stoichiometric mixture, eZst = 0.2, is shown by black
lines. TODO: change italics

2. Assign labels to the training data. Prior to training, each training datapoint is typically

assigned a true response. In this work, we present a multi-class classification problem for

optimal assignment of three combustion models with labels:

�ik =

�
�
�

1, if sample i belongs to the class k

0, otherwise
, (5.1)

where k = 1, 2, and 3 corresponds to IM, FPV, and FRC combustion models, respectively.

Hence, we use the local combustion submodel error of two essential local QoIs, namely T and

YCO, to programmatically assign labels. Details are presented in Section 5.4.1.
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Figure 5.2: Temperature, CO mass fraction, and mixture fraction fields (from top
to bottom) for (a) monolithic FRC and (b) monolithic FPV simulations. Upper
half: instantaneous fields, bottom half: time-averaged fields. The location of the
stoichiometric mixture, ÂZst = 0.2, is shown by black lines.

3. Construct the feature vector. In this work, we apply a feature selection method
based on the Maximal Information Coe�cient (MIC) [167], as discussed in Sec-
tion 5.4.2, to construct a feature set consisting of local thermophysical quantities
that include the mixture fraction, progress variable, density, local Prandtl num-
ber, and Euclidean norm of the mixture fraction gradient, i.e., ‰ = [ ÂZ, ÂC, fl, ÂT , Pr�, ÎÒ ÂZÎ2]|

for a given sample.

4. Train, validate, and test the classification algorithm. In this work, a random
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Predictions

Figure 5.5: Application of random forest classifier for combustion submodel assign-
ment of a single element GOX/GCH4 rocket combustor.

In this study, we employ the random forest (see Section 2.2.5) as our classifica-
tion algorithm. In the present investigation, the random forest classifier from the



CHAPTER 5. CLASSIFICATION WITHIN A REACTING FLOW SOLVER 89

OpenCV library [211] is used. Classification cost scales with the number of trees,
tree depth and the number of training points [24]. Hence, a random forest consisting
of twenty decision trees, and maximum depth of ten nodes is employed. Addition-
ally, 1× 104 training points have been randomly sampled from a single LES snapshot
consisting of 2 × 105 cells. A similar approach is used in other supervised learning
problems [212]. We must note that the flow in the present configuration is statistically
stationary, and thus training data from a single snapshot was found to be sufficient
for representing the thermophysical behavior of the combustor. The number of trees,
tree depth, and the number of training points are determined a priori by ensuring
that the classification performance remains unchanged on a validation set. Training is
performed once a priori, and requires 530 ms of walltime with 1 CPU. In a posteriori
simulations, random forest evaluations for 2× 105 cells at each timestep require 1 ms
of walltime with 600 CPUs.

5.5 Results
This section assesses the random forest classifier as a method for combustion submodel
assignment in DA simulations. A priori assessment is performed first to investigate
the behavior of random forests when targeting different QoIs. This is followed by an a
posteriori assessment to study improvements in target QoIs and other quantities that
result from the use of random forests in transient DA simulations. Table 5.1 summa-
rizes the eight cases, with different QoIs and combustion submodel error threshold
values θQ, explored in both a priori and a posteriori assessment.

Table 5.1: Cases investigated in the present study.

Case θT=0.05 θT=0.02 θCO=0.05 θCO=0.02 θ{T,CO}=0.05 θ{T,CO}=0.02 θ{T,CO,OH}=0.05 θ{T,CO,OH}=0.02

QoI, Q T̃ T̃ ỸCO ỸCO {T̃ , ỸCO} {T̃ , ỸCO} {T̃ , ỸCO, ỸOH} {T̃ , ỸCO, ỸOH}
Model threshold, θQ 0.05 0.02 0.05 0.02 0.05 0.02 0.05 0.02
Assessment A priori A priori A priori A priori A priori,

A posteriori
A priori,

A posteriori A priori A priori
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5.5.1 A priori assessment

A priori assessment involves using the random forest classifier to assign suitable com-
bustion submodels in a test dataset that is created from a monolithic FRC simulation
at an unseen timestep. Temperature and CO and OH mass fraction – œ { ÂT , ÂYCO, ÂYOH}
in the test set is then used as QoI for reconstructing the true response, through the
procedure described in Section 5.4.1, for comparison with random forest predictions.
Figure 5.6 shows the use of this labeling approach on the training data in ÂZ- ÂC com-
position space for ◊{T,CO} = 0.02 and ◊{T,CO} = 0.05, respectively. In both cases, IM
is shown to be assigned at points where ÂC ¥ 0, FPV is assigned mostly to conditions
near the equilibrium composition. The submodel assignment reverts back to FRC in
regions dominated by non-equilibrium e�ects and heat-losses that are not captured
by the adiabatic steady-state flamelet formulation. Employing ◊{T,CO} = 0.02 is seen
to be more stringent than employing ◊{T,CO} = 0.05, with a 0.18 greater fraction of
scatter data on the stable branch assigned as FRC, especially for fuel-rich mixtures.
It should be noted that while most out-of-flamelet regions would be assigned FRC,
some regions with low reactivity and far from stoichiometry (eg. ÂZ = 0.7) generate
smaller errors which are then be assigned FPV.
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Figure 5.6: Training data for two di�erent combustion submodel error thresholds
◊{T,CO}.

[-] [-]

[-]

Figure 5.6: Training data for two different combustion submodel error thresholds
θ{T,CO}.

5.5.1 A priori Assessment

A priori assessment involves using the random forest classifier to assign suitable com-
bustion submodels in a test dataset that is created from a monolithic FRC simulation
at an unseen timestep. Temperature and CO and OH mass fraction α ∈ {T̃ , ỸCO, ỸOH}
in the test set is then used as QoI for reconstructing the true response, through the
procedure described in Section 5.4.1, for comparison with random forest predictions.
Figure 5.6 shows the use of this labeling approach on the training data in Z̃-C̃ com-
position space for θ{T,CO} = 0.02 and θ{T,CO} = 0.05, respectively. In both cases, IM
is shown to be assigned at points where C̃ ≈ 0, FPV is assigned mostly to conditions
near the equilibrium composition. The submodel assignment reverts back to FRC in
regions dominated by non-equilibrium effects and heat-losses that are not captured
by the adiabatic steady-state flamelet formulation. Employing θ{T,CO} = 0.02 is seen
to be more stringent than employing θ{T,CO} = 0.05, with a 0.18 greater fraction of
scatter data on the stable branch assigned as FRC, especially for fuel-rich mixtures.
It should be noted that while most out-of-flamelet regions would be assigned FRC,
some regions with low reactivity and far from stoichiometry (e.g., Z̃ = 0.7) generate
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smaller errors which are then be assigned FPV.
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Figure 5.7: A priori analysis, comparing combustion model assignments. Instantaneous tempera-
ture, and mass fractions of CO and OH of the test set are also presented; stoichiometric isocontour
with eZst = 0.2 is shown in black. TODO: change italics

framework that uses local quantities as QoIs and features.

These results demonstrate that the present data-assisted framework enables a fully adjustable

level of simulation fidelity through the use of varying submodel error threshold values. Random

forests are demonstrated to be a reasonably accurate and simple approach for the combustion sub-

model assignment problems.

5.5.2 A posteriori assessment: Data-assisted LES

Data-assisted (DA) simulations using two di↵erent model thresholds, ✓{T,CO} = 0.05 and ✓{T,CO} =

0.02 are performed by employing random forest classifiers in-flight during simulation runtime. The

discussion from this section also includes comparisons with monolithic FRC and FPV simulations.

Figure 5.8a shows that employing model threshold ✓{T,CO} = 0.05 on the DA simulation results

in temperature predictions that are in good agreement with the monolithic FRC simulation, shown

in Figure 5.2a. However, time-averaged results show that a thin layer of CO develops at the chamber
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Figure 5.7: A priori analysis, comparing combustion model assignments. Instanta-
neous temperature, and mass fractions of CO and OH of the test set are also presented;
stoichiometric isocontour with Z̃st = 0.2 is shown in black.

Figure 5.7 demonstrates the a priori combustion submodel assignment on an un-
seen FRC-simulation snapshot using the six different random forest cases summarized
in Table 5.1. For all six cases, IM is assigned at the injector and the oxidizer core. In
general, FRC is assigned to the near-wall and fuel-rich regions within the combustor,
where intermediate reactions are not captured well by tabulated chemistry submod-
els. Using temperature as QoI and a model threshold of θT = 0.05 results in an IM
assignment of 5% of the domain, 28% FRC assignment, with the rest being described
by the FPV model. Constraining the temperature model threshold θT = 0.02 results
in FRC assignment in 62% of the domain, with IM assignment remaining unchanged.
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Using ỸCO as QoI and a model threshold of θCO = 0.05 results in greater (18%
of the domain) IM assignment, since the CO mass fraction in most of the oxidizer
core is close to zero. FRC is assigned to 34% of the domain. Reducing the CO
model threshold θCO = 0.02 results in 47% FRC assignment, with IM assignment
unchanged. Finally, the combined use of both temperature and CO mass fraction as
QoI, Q = {T̃ , ỸCO}, results in submodel assignment with combined characteristics of
employing each individual QoI. θ{T,CO} = 0.05 results in 31% FRC assignment within
the domain, while θ{T,CO} = 0.02 results in 52% FRC assignment. Adding OH mass
fraction to the QoI set Q = {T̃ , ỸCO, ỸOH} increases the FRC assignment to 37%
and 70% for thresholds θ{T,CO,OH} = 0.05 and θ{T,CO,OH} = 0.02, respectively. Results
demonstrate that reducing model threshold θQ and increasing the number of QoIs
increases submodel assignment of FRC. The submodel assignments for each case are
summarized in Table 5.2.

Table 5.2: A priori analysis of classifier, summarizing submodel assignment and
assignment accuracy.

Case θT=0.05 θT=0.02 θCO=0.05 θCO=0.02 θ{T,CO}=0.05 θ{T,CO}=0.02 θ{T,CO,OH}=0.05 θ{T,CO,OH}=0.02

IM:FPV:FRC 5:67:28 5:33:62 18:48:34 18:35:47 6:63:31 6:42:52 6:57:37 6:24:70
True Classification 0.774 0.725 0.756 0.715 0.753 0.734 0.709 0.691

Table 5.2 also summarizes the true classification of random forests for the eight
different cases. Here, true classification is defined as the percentage of classifier as-
signments that correctly match the true output responses evaluated directly from
simulation data. The true classification fraction range from approximately 0.7 to 0.8,
which is comparable to the use of random forests on another classification problem
in a flow physics context [213]. Higher true classification can be achieved through
the use of complex deep learning classifiers, which requires (i) more elaborate efforts
than the random forests in hyperparameter tuning and (ii) much larger datasets for
good performance, and should be subject to further study.

From Figure 5.7, we observe that model assignment in all six cases is not spatially
smooth, and that model assignment appears speckled. This is because the smooth-
ness of classification boundaries formed within the 6-dimensional feature space is not



CHAPTER 5. CLASSIFICATION WITHIN A REACTING FLOW SOLVER 93

translated when transformed to physical space. This is a common issue in classifica-
tion problems involving spatial data, such as in medical imaging or image processing.
Two strategies can be employed to improve spatial smoothness in classification prob-
lems [68, 214]: (i) applying the classification techniques to a neighborhood of cells,
or (ii) applying a spatial filter on the predicted labels and discretizing the filtered
labels. In the a posteriori assessment in Section 5.5.2, we apply the latter strategy,
since it is better suited with the current framework that uses local quantities as QoIs
and features.

These results demonstrate that the present DA framework enables a fully ad-
justable level of simulation fidelity through the use of varying submodel error thresh-
old values. Random forests are demonstrated to be a reasonably accurate and simple
approach for the combustion submodel assignment problems.

5.5.2 A posteriori Assessment: Data-assisted LES

DA simulations using two different model thresholds, θ{T,CO} = 0.05 and θ{T,CO} =
0.02 are performed by employing random forest classifiers in-flight during simulation
runtime. The discussion from this section also includes comparisons with monolithic
FRC and FPV simulations.

Figure 5.8a shows that employing model threshold θ{T,CO} = 0.05 on the DA
simulation results in temperature predictions that are in good agreement with the
monolithic FRC simulation, shown in Figure 5.2a. However, time-averaged results
show that a thin layer of CO develops at the chamber wall at 170 mm. Additionally,
a thicker thermal boundary layer is also observed when compared to monolithic FRC
simulations. Nonetheless, both species and thermal boundary layers are thinner than
the monolithic FPV simulations that were presented in Figure 5.2b. Averaged FRC
utilization with θ{T,CO} = 0.05 is at 34% of the domain, with IM-utilization at 4%.
In addition, a thin intermittent area close to the wall is also assigned FRC. This
indicates that the random forest recognizes the importance of wall effects on CO and
temperature but that the user-defined model error threshold θ{T,CO} = 0.05 is too
large.
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(a) A posteriori DA LES with ✓{T,CO} = 0.05.

(b) A posteriori DA LES with ✓{T,CO} = 0.02.

Figure 5.8: Temperature, CO mass fraction, and mixture fraction fields (from top to bottom) from
a posteriori DA LES for (a) ✓{T,CO} = 0.05 and (b) ✓{T,CO} = 0.02. Upper half: instantaneous

fields, bottom half: time-averaged fields; stoichiometric isocontour with eZst = 0.2 is shown in black.
TODO: change italics

fidelity combustion model employed.

Generating numerical predictions that match experimental wall measurements are challenging for

this rocket combustor case, since these quantities are dependent on overall flow and temperature fields

in a highly nonlinear system. Studies [144, 158] comparing LES and RANS results have reported up

to 8% deviation from wall pressure measurements. Wall heat flux predictions are more sensitive to
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Figure 5.8: Temperature, CO mass fraction, and mixture fraction fields (from top to
bottom) from a posteriori DA LES for (a) θ{T,CO} = 0.05 and (b) θ{T,CO} = 0.02.
Upper half: instantaneous fields, bottom half: time-averaged fields; stoichiometric
isocontour with Z̃st = 0.2 is shown in black.

Figure 5.8b shows that tightening the model threshold θ{T,CO} = 0.02 results in
temperature, CO, and mixture fraction fields that agree with the monolithic FRC
simulation, shown in Figure 5.2a. Model assignment using this threshold results
in 60% FRC utilization. Before x = 150 mm FRC is assigned to all fuel-rich and



CHAPTER 5. CLASSIFICATION WITHIN A REACTING FLOW SOLVER 95

near-wall regions. For x > 150 mm, FRC is assigned to most of the domain where
incomplete combustion products and intermediate species are dominant.
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Figure 5.9: Comparisons of time-averaged radial profiles of (a) temperature and (b)
CO mass fraction between monolithic FRC, monolithic FPV, and data-assisted (DA)
simulations at an axial distance x = 250 mm. Time-averaged utilization of FRC is
included.

Figure 5.9 shows comparisons of radial profiles of time-averaged temperature and
CO mass fraction at an axial distance of 250 mm. Effects of wall-heat loss on the
monolithic FPV simulation is seen to reduce the overall temperature and thicken the
thermal boundary layer, which in turn results in greater CO mass fraction. Using
a model threshold of θ{T,CO} = 0.05, DA-predictions for temperature and CO mass
fraction profiles away from the wall are in good agreement with monolithic FRC sim-
ulations, and averaged FRC submodel utilization ranges between 16% and 38%. At
r = 5 mm, the random forest is able to recognize when the absolute error between tem-
perature diminishes and thus assigns less FRC accordingly, which results in greater
temperature and CO mass fraction deviation from monolithic FRC simulations. After
r = 5.7 mm, the random forest begins to recognize the importance of near-wall effects
and assigns more FRC. However, this FRC utilization is still insufficient for recreat-
ing monolithic FRC simulations. Further constraining the DA-simulation threshold
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to θ{T,CO} = 0.02 improves the agreement with monolithic FRC-simulations. How-
ever, small errors can still be seen even with high FRC submodel utilization that
ranges from 61% to 90%.
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Figure 5.10: FRC and DA-assisted calculation of CO mass fraction as a function of
timestep in a 0D homogeneous reactor.

Results from Figure 5.9 show that the present DA modeling approach can generate
simulation results that are in agreement with monolithic FRC calculations. However,
errors observed are greater than the local model error threshold θ{T,CO} used for
training the random forests. This is caused by small changes in one state that can
result in significant deviations in later states. This effect is illustrated by applying
DA combustion modeling with local model error threshold θ{T,CO} = 0.02 on CO mass
fraction, using a rich CH4/air mixture (Z = 0.55) in a constant pressure homogeneous
reactor at 20 bar and initial temperature of 1800 K, as shown in Figure 5.10. In
this setup, it is observed that while the random forest correctly assigns the correct
model based on local model error at 5800 timesteps, the CO trajectory leads to
a total error exceeding the local error threshold of 0.02 as the DA simulation no
longer has knowledge of the monolithic FRC CO production beyond this timestep
and cannot recover to the correct state. However, the benefit of the present approach
is that, in the worst-case, errors made do not exceed errors made by the lowest fidelity
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combustion model employed.
Generating numerical predictions that match experimental wall measurements

are challenging for this rocket combustor case, since these quantities are dependent
on overall flow and temperature fields in a highly nonlinear system. Studies [206,
215] comparing LES and RANS results have reported up to 8% deviation from wall
pressure measurements. Wall heat flux predictions are more sensitive to simulation
parameters, where deviations up to 75% have been reported in the same studies.
While the aim of the present study is not to find simulation results that match
the experimental results, LES calculations of wall pressure and wall heat flux are
presented with measurements by Perakis and Haidn [204] in Figure 5.11 to quantify
effects of applying the DA formulation on overall combustor behavior.
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Figure 5.11: Comparison of simulation results for (a) wall pressure and (b) wall heat
flux calculations with experimental measurements [204].

Figure 5.11a shows that wall pressure predictions between monolithic FRC agree
well with experimental measurements. The DA simulation with θ{T,CO} = 0.02 shows
a small underprediction, but still possesses reasonable agreement with monolithic
FRC. The DA simulation with θ{T,CO} = 0.05 shows a greater underprediction. Wall
pressure underprediction can be caused by reduced fuel conversion [216]. This is likely
the case, since higher CO levels in both cases are observed in Figure 5.9. Additionally,
the monolithic FPV simulation also demonstrates the lowest pressure and highest CO
levels.
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Figure 5.11b shows that wall heat flux predictions for FRC simulation are in good
agreement with experimental data after x = 120 mm, but with a steeper heat flux rise.
This steep heat flux rise is likely due to the misrepresentation of turbulent mixing in a
thin axisymmetric domain, and is also seen in other axisymmetric studies [202, 203].
Tightening the model threshold θ{T,CO} results in better convergence with monoolithic
FRC calculations. The DA simulation with θ{T,CO} = 0.02 is in reasonable agreement
with the FRC simulation, while the FPV simulation demonstrates the lowest heat
flux due to low overall temperatures from low combustion efficiency.
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Figure 5.12: FRC utilization and normalized computational cost versus combustion
submodel error threshold θ{T,CO}.

Figure 5.12 shows FRC usage and corresponding computational cost (normal-
ized by FRC cost) of the DA simulation as a function of combustion submodel er-
ror threshold θ{T,CO} when computed using 600 Intel Xeon (E5-2680v2) processors.
Each timestep in the FPV simulation requires 50 ms of walltime to solve, while each
timestep in the FRC requires a walltime of 2,300 ms. When θ{T,CO} = 0.50, the clas-
sifier does not assign FRC in the entire domain, resulting in a normalized cost of 8%.
This additional cost represents the overhead from the random forest evaluation and
the coupling of the three combustion submodels in the same domain. Simulations
performed in this study utilized 34% (θ{T,CO} = 0.05) and 60% FRC (θ{T,CO} = 0.02),
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which resulted in 70% and 80% of FRC cost, respectively. These results demonstrate
that classification algorithms can be utilized in high-fidelity simulations to reduce
computational cost. Further reductions of the computational cost are achievable by
combining the method proposed in this work with regression techniques [78, 79] to
reduce the complexity of the FRC representation.

5.5.3 Generalization
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can be applied to di↵erent configurations as long as the training data can represent the underlying

thermo-physical behavior. We note that all simulations and training data from the present study

employ the same mesh. Since the random forest classifies well in this modified configuration, this

method should still be e↵ective for di↵erent mesh resolutions as long as the flow can be represented

by local points of the training data. The generalizability of this method improves with increasing

availability of representative data.

Figure 5.13: Comparison of time-averaged temperature and CO mass fraction fields for monolithic
FRC, monolithic FPV, and a posteriori DA LES (✓{T,CO} = 0.02) on a configuration with three
times the inlet mass flow rate. Time-averaged and instantaneous model assignment for DA LES is
shown at the bottom. Stoichiometric isocontour with eZst = 0.2 is shown in black. TODO: change
italics

5.6 Summary

This study introduced a data-assisted modeling approach, employing random forest classifiers, as a

method for dynamic and local combustion model assignment in reacting flow simulations. A priori

assessment was conducted on the random forests, which were fed with six input features based on

local thermofluid properties, to evaluate the behavior of the classifiers during submodel assignment

when targeting di↵erent QoIs. Random forests were shown to assign three di↵erent candidate com-

bustion models – finite-rate chemistry (FRC), flamelet progress variable (FPV) approach, and inert

mixing (IM) – based on predefined QoIs with fraction of true classification ranging from approxi-

mately 0.70 to 0.80.

Two cases of a posteriori simulations using random forest classifiers for combustion submodel

assignment during simulation runtime, were performed. Time-averaged results of temperature and
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Figure 5.13: Comparison of time-averaged temperature and CO mass fraction fields
for monolithic FRC, monolithic FPV, and a posteriori DA LES (θ{T,CO} = 0.02)
on a configuration with three times the inlet mass flow rate. Time-averaged and
instantaneous model assignment for DA LES is shown at the bottom. Stoichiometric
isocontour with Z̃st = 0.2 is shown in black.

In order to demonstrate the ability of random forests to generalize, additional
LES are performed on a modified configuration with three times the inlet mass flow,
while keeping all other parameters constant. Figure 5.13 compares time-averaged
temperature and CO mass fraction fields for monolithic FRC, monolithic FPV, and
a posteriori DA LES (θ{T,CO} = 0.02) for this setup. All three LES cases in this mod-
ified configuration demonstrate a longer oxidizer core than the original configuration
(Figure 5.2) due to higher flow velocity, indicating less complete combustion. When
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compared to FRC, FPV overpredicts the thickness of the thermal boundary layer and
CO formation. DA LES with model threshold (θ{T,CO} = 0.02) predicts temperature
and CO flowfields in good agreement with monolithic FRC calculations. Random
forest assigns FPV to the lean side of the flame, while assigning FRC to the rich side.
This is also seen in the DA case of the original configuration in Figure 5.8 from 0 to
150 mm, where major combustion products have not fully formed. Model assignment
using this threshold results in 51% FRC and 6% IM utilization, resulting in 77% of
the FRC cost.

Results from this modified configuration demonstrate that the present DA ap-
proach can be applied to different configurations as long as the training data can
represent the underlying thermophysical behavior. We note that all simulations and
training data from the present study employ the same mesh. Since the random for-
est classifies well in this modified configuration, this method should still be effective
for different mesh resolutions as long as the flow can be represented by local points
of the training data. The generalizability of this method improves with increasing
availability of representative data.

5.6 Summary
This chapter introduced a DA modeling approach, employing random forest classifiers,
as a method for dynamic and local combustion model assignment in reacting flow
simulations. A priori assessment was conducted on the random forests, which were
fed with six input features based on local thermofluid properties, to evaluate the
behavior of the classifiers during submodel assignment when targeting different QoIs.
Random forests were shown to assign three different candidate combustion models –
FRC, FPV, and IM – based on predefined QoIs with fraction of true classification
ranging from approximately 0.70 to 0.80.

Two cases of a posteriori simulations using random forest classifiers for combustion
submodel assignment during simulation runtime, were performed. Time-averaged
results of temperature and CO mass fraction demonstrated that the DA simulation
produced species and temperature profiles in better agreement with monolithic FRC
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than monolithic FPV calculations. The use of the random forest with submodel error
threshold of θ{T,CO} = 0.02 results in significant improvements from monolithic FPV
simulations in all quantities at a 20% lower cost than monolithic FRC calculations.
An additional DA LES (θ{T,CO} = 0.02), performed on a modified configuration with
three times the inlet mass flow rate, demonstrated that the present approach can
be applied to different configurations as long as the training data can represent the
relevant thermophysical behavior.

Results from this chapter demonstrate that integration between ML models and
numerical solvers can benefit from domain knowledge in managing OOD errors. The
resulting integrated framework shows promise as a tool for managing fidelity-cost
trade-offs in high-fidelity simulations.



Chapter 6

Hybrid Physics-Machine Learning
Model for Laser Ignition∗

6.1 Introduction
The previous chapter involves the integration of ML methods with numerical meth-
ods for simulating a model rocket combustor configuration. Similarly, this chapter
examines opportunities for integrating deep learning with an SDE for modeling laser
ignition within rocket combustors. As discussed in Section 1.2, laser-ignited propul-
sion systems often require ensemble measurements or simulations for a robust un-
derstanding of the system behavior. Since these ensemble datasets can be costly to
collect, this chapter focuses on identifying opportunities for modeling laser ignition
behavior with sparse ensemble datasets.

To this end, we introduce a reduced-order physics-embedded SDE-ML framework
for spatio-temporal modeling of laser ignition by integrating an SDE for modeling ker-
nel dynamics with a deep learning model trained solely for representing ignition ker-
nel morphology. We evaluate this approach for modeling ignition within the gaseous

∗This chapter contains work accepted for publication from Chung et al. [10], with minor mod-
ifications. W.T. Chung planned, performed, and analyzed experiments, and developed modeling
techniques. C. Laurént assisted with planning experiments and developing model techniques. D.
Passiatore performed simulations.
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CH4/O2 model rocket combustor [86] detailed in Section 6.2, while the methods em-
ployed within this work are introduced in Section 6.3. We discuss results from this
work in Section 6.4, before providing concluding remarks in Section 6.5.

6.2 Configuration
In this work, we model ignition within the gaseous CH4/O2 model rocket combustor
by Strelau et al. [86]. This optically accessible configuration was designed specifically
for statistically characterizing laser ignition phenomena of gaseous mixtures within
rockets. The experimental configuration consists of a shear co-axial injector where the
oxidizer flows through a central axisymmetric jet with diameter do = 3.57 mm, while
fuel is injected through an annulus with inner and outer diameters df,i = 5.33 mm and
df,o = 6.35 mm. The cylindrical combustion chamber has a total length of 111 mm
and a diameter of dch = 50.8 mm. The combustor operates at a global oxidizer-to-
fuel ratio of approximately 3, with mass flow rates of oxidizer ṁo = 6.58 g/s and fuel
ṁf = 2.11 g/s that correspond to sonic and subsonic conditions, respectively. The
temperature of the oxidizer and the fuel supplied at the injector inlet are To = 242 K
and Tf = 282 K, respectively. Prior to ignition, the reactants are injected to pressurize
the chamber until reaching a quasi-steady-state with a nominal operating pressure of
1.4 bar. The laser is then deployed near this non-premixed mixture via an Innolas
Spitlight Standard 600-10 laser in single-shot mode, which generated a 532 nm laser
pulse with laser energy of Elaser = 22± 7 mJ.

In this work, we generate datasets for developing and testing the SDE-ML model.
In particular, we process Schlieren measurements of Nexp = 153 laser ignition tests,
across 21 laser deposition locations in the jet centerplane. The measurements are
recorded at an acquisition rate of 500 kHz. Approximately five ignition tests were
performed in laser locations where ignition probability Pig = 0 and Pig = 1, resulting
in an estimated uncertainty of ±0.2. For laser locations where ignition probability 0 <
Pig < 1, approximately ten ignition tests were performed, resulting in an estimated
uncertainty of ±0.1.



CHAPTER 6. HYBRID PHYSICS-ML MODEL FOR LASER IGNITION 104

Previous studies [94, 95] have noted that reduced-order models for forced igni-
tion phenomena can be constructed with inputs from inert simulations to represent
flows during the early stages of ignition – where dilational effects from heat release
are not yet relevant. A non-reacting LES is calculated with a high-order finite-
difference compressible flow solver [217]. For spatial discretization, a sixth-order skew-
symmetric scheme is employed with a targeted essentially non-oscillatory scheme [218]
for shock-capturing, while time advancement is performed via a third-order SSP-RK3
method [219]. LES closure is provided via the Smagorinsky model [45], with turbu-
lent Prandtl and Schmidt numbers of 0.7. Multi-component species transport [220]
is employed to represent molecular mixing within this configuration. This LES was
advanced with a timestep size/of 16 ns, corresponding to an approximate acoustic
CFL = 0.1, on 96 NVIDIA V100 GPUs with a wall-clock-time of 0.6 s per timestep.

The LES domain consists of a single-block curvilinear mesh with 221M (960×480×
480) mesh points, which is stretched in all three directions. The finest mesh spacing
is at the injector exit, where the mesh is locally uniform with cell size of 88µm, was
chosen by examining the sensitivity of LES predictions of shock train locations across
different mesh resolutions. These shock train locations, which have previously been
used to validate jet topology of rocket combustors [85], were determined by observing
the presence of peaks in pixel intensity and density magnitudes in the centerline of
time-averaged measurements and LES, respectively. Figure 6.1 compares instanta-
neous experimental Schlieren and simulated density fields, with reasonable agreement
seen between the visible shock train locations in the predictions. We note that one
of the key challenges presented by this complex high-speed multi-physics flow config-
uration is the development of a data-driven model that is sufficiently robust to the
limited information provided by experimental measurements, as well as discrepancies
between simulation and measured data.
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Figure 6.1: Instantaneous (a) experimental Schlieren measurements [86] with (b)
density fields from the present LES.

6.3 Methods

6.3.1 SDE-ML Framework

In this section, we describe the 2D SDE-ML approach for utilizing (i) both 3D LES
and 2D experimental data for modeling kernel morphology via the deep learning
approach, and (ii) LES statistics for informing SDE-based kernel transport, as sum-
marized by Figure 6.2. Ensemble calculations can be performed with this approach
to evaluate statistical behavior of laser ignition in the present configuration.

In this work, we represent space- and time-dependent kernel morphology Υn(x, tn)
as a binary flowfield of ignited and non-ignited segments. Thus, the spatio-temporal
evolution of kernel morphology for timestep n is expressed as:

Υn(x, tn) =





1 ignited cell at tn ,

0 non-ignited cell at tn .
(6.1)
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The use of conventional image processing techniques, involving spatio-temporal
filters and edge detection algorithms, can be di�cult for this specific configuration due
to (i) di�erences in timescales encountered between direct and indirect ignition, and
(ii) measured structures from the jet obstructing ignition kernel structure. Thus, we
employ an open-source video segmentation tool [223] for extracting a total of 19,765
frames of kernel morphology segments Y n (partially shown in orange in Figure 6.2).
Each ignition test case is segmented starting from time after laser deposition · =
t ≠ tlaser = 4µs to avoid imaging artifacts that arise from the pressure wave that
forms immediately after laser deposition. Each of the frames of the kernel segments
is manually inspected for quality prior to ML training.

(ii) Collect Flowfield
Statistics from Simulations

… … …

…

Input: Output:

Step 2: Evolve Kernel Centroid with SDE

Step 1: Evolve Kernel Geometry with ML

(i) Extract Kernel Segment from 
Experimental Schlieren Measurements

Step 0: Prepare Data
deployed near the non-premixed mixture via an In-1

nolas Spitlight Standard 600-10 laser in a single-shot2

mode that generated a 532 nm laser pulse with a laser3

energy of approximately 20 mJ.4

Fig. 1: Comparison between instantaneous and mean (a)
experimental Schlieren measurements with (b) numerical
Schlieren from the present LES. Shock train locations are
shown in red.

3. Methods5

3.1. Hybrid SDE-ML Framework6

Here, we introduce the present reduced-order hy-7

brid SDE-ML modeling framework for predicting8

laser-induced ignition kernel trajectory, growth, and9

geometry. Ensembles calculations can be performed10

with this framework to estimate the ignition probabil-11

ity based on kernel evolution. This approach consists12

of two main components: (i) an SDE and (ii) a deep13

learning model for predicting the temporal evolution14

of kernel position and geometry, respectively. This15

data-driven framework relies on both simulation and16

experimental data, as detailed in Section 3.2 ,sec:ex[]17

Specifically, the centroid of the kernel is treated18

as Lagrangian particle with position xp that moves19

based by integrating:20

dtxp = u(xp) + u�(xp)N (0,�) (1)

where · and ·� are mean and root-mean-squared (rms)21

quantities, respectively. As performed in other stud-22

ies [10, 11], these velocity u statistics are extracted23

from time-averaged inert LES (see Section 3.2),24

which circumvents the use of costly reacting simu-25

lations for modeling ignition behavior. The noise26

term N (0,�) models turbulent fluctuations that lead27

to stochastic variations between different instances of28

kernel predictions. The standard deviation � = 0.12529

within the noise term was determined via a hyperpa-30

rameter search on a validation set discussed in Sec-31

tion 3.4.32

In this work, we represent kernel geometry Y as33

a binary flowfields of ignited and non-ignited pixels34

extracted from experimental measurements (see Sec-35

tion 3.3). Thus, the spatio-temporal evolution of ker-36

nel geometry over n timesteps is expressed as:37

Y n(x, tn) =

�
1 ignited pixel at tn

0 non-ignited pixel at tn ,
(2)

In this work, the ML model fML generates next-38

timestep predictions Ŷ n+1 of kernel geometry via39

segmentation, where each pixel within the flow is40

classified as ignited and non-ignited via:41

Ŷ n+1(x, tn + �t) = fML(Ŷ
n,u,u�, Z, Z�) (3)

with an initial condition Ŷ 0 � Y 0. The ML in-42

puts consist of (i) mean and rms flowfields of veloc-43

ity u and mixture fractions Z extracted from the inert44

LES, as well as (ii) the ML output from the previous45

timestep prediction. that provides spatial information46

on ignited and non-ignited pixels at time t = tin. Fur-47

ther details on the ML component are shared in Sec-48

tion 3.4.49

3.2. Simulation Data50

The simulation data used in this modeling frame-51

work was generated by performing non-reacting LES52

of the present configuration using the Legion-based53

Hypersonics Task-based Research (HTR) solver [16].54

This solver employs a high-order conservative finite-55

difference method for simulation of compressible56

multicomponent Navier-Stokes equations on curvilin-57

ear grids. Specifically, a low-dissipation sixth-order58

targeted essentially non-oscillatory (TENO) [17]59

is employed for spatial discretization of the con-60

servation equations on Cartesian stretched grids61

time advancement is performed via a third-order62

strong-stability-preserving Runge–Kutta (SSP-RK3)63

method [18]. HTR has been previously demonstrated64

on several compressible flow configurations [? ].65

For this work, the computational domain is dis-66

cretized by a single-block curvilinear mesh with67

221M (960 � 480 � 480) mesh points, which is68

stretched in all three directions. The finest mesh69

spacing is at the injector exit, where the mesh is lo-70

cally uniform and Cartesian with mesh size of �x =71

88 µm. Prior to this work, a mesh convergence study72

was performed to by examining the examining LES73

predictions of shock train locations within the oxi-74

dizer jet across meshes of increasing resolution. Clo-75

sure for the subgrid-scale stress is provided via the76

Smagorinsky model [19].77

Figure 5 shows a comparison between mean exper-78

imental and numerical Schlieren fields, which shows79
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n,u,u�, Z, Z�) (3)

with an initial condition Ŷ 0 � Y 0. The ML in-42
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n,u,u�, Z, Z�) (3)

with an initial condition Ŷ 0 � Y 0. The ML in-42
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Fig. 2: SDE-ML framework for predicting ignition behavior.
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Figure 6.2: SDE-ML framework for modeling stochastic ignition.

To obtain this binary flowfield, we process Schlieren measurements of the present
configuration. We note that the proposed SDE-ML method is agnostic to the source
of kernel morphology data, and could be extended to employ data from high-fidelity
reacting LES. However, ML models typically perform more accurately with increasing
data diversity and volume [17]. Thus, we employ already available data from the 153
experimental tests to demonstrate the present framework. In future work, this data
scarcity could be addressed by extending the present framework with multi-fidelity
training [221] that combines small samples of high-fidelity reacting LES with large
samples of more affordable and lower-fidelity simulation data.

The use of conventional image processing techniques, involving spatio-temporal
filters and edge detection algorithms, can be difficult for this specific configuration due
to (i) differences in time-scales encountered between direct and indirect ignition, and
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(ii) measured structures from the jet obstructing ignition kernel structure. Thus, we
employ an open-source video segmentation tool [222] for extracting a total of 19,765
frames of kernel morphology segments Υn (partially shown in orange in Figure 6.2).
Each ignition test case is segmented starting from time after laser deposition τ =
t − tlaser = 4µs to avoid imaging artifacts that arise from the pressure wave that
forms immediately after laser deposition. Each of the frames of the kernel segments
is manually inspected for quality prior to ML training.

An ML model fML is employed for autoregressively generating next-timestep pre-
dictions Υ̂n+1 of kernel morphology via segmentation, which classifies flowfield seg-
ments as ignited and non-ignited via:

Υ̂n+1(x, tn+1) = fML(Υ̂n,u,u′, Z, Z ′) , (6.2)

with an initial condition Υ̂0 ≡ Υ0. The ML inputs consist of stacked channels of (i)
mean · and fluctuating ·′ components of velocity u = [ũx, ũr]⊺ and mixture fraction Z
extracted from temporal- and azimuthal-averaged flowfields over 320µs (representa-
tive of the time taken after laser deposition to transition to a flame), as well as (ii) the
kernel segments from the previous timestep. These seven inputs are stacked together
with axial, transverse, and channel dimensions of Nx×Nr ×Nc = 250× 160× 7 that
can be fed into a CNN. To predict the evolution of kernel morphology, we employ a
U-Net [117] model (shown in Figure 6.2) – a well-established deep learning architec-
ture suited for segmentation tasks. This CNN uses a small moving window, known as
a filter, that performs a mathematical operation (typically convolution and pooling
operations [6]) on a spatial neighborhood of values (in the first CNN layer containing
[Υ̂n,u,u′, Z, Z ′]⊺), thereby enabling higher prediction accuracy in spatial problems
compared to other ML algorithms. A key aspect of this model design involves the use
of skip connections that connect processed features from the later hidden layers with
unprocessed features from the earlier layers – which helps in preserving fine-grained
details during segmentation.

When generating ML predictions, CNN filters at the input layer supplement the
kernel segment with surrounding flowfield information from the inert LES statistics.
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Even though the LES flowfield remains the same across data samples, the flowfields
vary from the perspective of the convolutional filter and provide local mixture infor-
mation for the CNN window containing an ignited kernel segment. If these channels
containing local mixture information were not present, the CNN would not have suf-
ficient information to propagate or extinguish the ignition kernel, since there would
be no inputs that inform the CNN on the proximity of the ignition kernel to the
reactive/non-reactive mixtures. This choice of ML inputs is motivated by previous
work involving rule-based and analytic reduced-order ignition models [94, 95]. The
computational domain (Nx × Nr = 250 × 160) for this reduced-order model is dis-
cretized with a uniform mesh size of 180µm in both axial and radial directions. This
grid size was selected by considering limitations in computational memory during
multi-GPU training of the ML model, and is similar in size with the inert LES grid
described in Section 6.2.

To model stochastic variations of different ignition trajectories, we treat the igni-
tion kernel centroid as a Lagrangian particle with position xp that is advanced via
the following SDE:

dtxp = up + u′pdW , (6.3a)

up =
∫
Υ̂u dΥ̂/∫ Υ̂ dΥ̂ , (6.3b)

xp =
∫
Υ̂x dΥ̂/∫ Υ̂ dΥ̂ , (6.3c)

where a Gaussian distribution N (0, σ) introduces turbulent fluctuations via a Wiener
process dW . The Gaussian standard deviation σ = 0.125 was determined with a
hyperparameter search on a validation set discussed in Section 6.3.2. Both mean
and fluctuating velocity components of the particle are approximated by averaging
the velocity field that intersects with the area of kernel segments. Equation (6.3a) is
advanced via a forward Euler scheme with a timestep of ∆tSDE = ∆tML = 8µs, which
enables the kernel centroid to be transported across the different cells in the SDE-
ML grid, while ensuring that the number of Schlieren samples are sufficiently large
(O(104)) for training a deep learning model. During position updates, the ML channel
with the kernel segment Υ̂n is updated with the new kernel Υ̂n+1, while preserving
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the other channels (since flowfield statistics are assumed to be time-independent),
before repeating the ML and SDE steps for the next timestep iteration. We note
that prior to SDE advancement, all ignited cells are spatially translated by ∆xML =
xp(Υn+1) − xp(Υn) so that kernel transport is governed solely by the SDE without
advective effects from the ML model. A wall-clock-time of 0.3 s with one V100 GPU
generates a single ignition trajectory with 128 timesteps that compounds to a model
duration of 1 ms.

6.3.2 ML Setup

The present U-Net contains 82 layers, corresponding to approximately 31M trainable
parameters, with the initial weights set via He initialization [112]. During training,
the Adam optimizer minimizes the cell-wise cross-entropy loss with an initial learning
rate of 1e-4 and batch size of 32. These hyperparameters were selected to match
default U-Net settings [117]. Training this U-Net via distributed data parallelism
and mixed precision on PyTorch Lightning 1.6.5 [160] on four V100 GPUs requires
approximately 1 hour wall-clock-time.

The processed dataset, with the input-output pair described by Equation (6.2),
is split to consider 18 in-distribution and three OOD laser deposition locations. The
three OOD locations are selected to each represent direct/indirect/failed ignition
phenomena that can be used to evaluate the SDE-ML model’s behavior when ex-
trapolating beyond seen laser deposition locations. 80% of the in-distribution data
is used for training, while the remaining 20% are split evenly for validating and unit
testing the ML component of the present framework via cell accuracy (defined as
the percentage of cells that are classified correctly). Without the SDE component,
teacher forced (where the ML input consists only of the ground-truth samples Υn)
next-frame predictions from this model provides a cell accuracy of 99.7% in the test
set. Without the SDE component, we note that in the autoregressive (where the ML
outputs Υ̂n are iteratively used as the next timestep’s inputs, as described by Equa-
tion (6.2)) next-frame predictions, small errors from previous iterations accumulate
(a well-known ML property [28]) – leading to approximately 90% test cell accuracy



CHAPTER 6. HYBRID PHYSICS-ML MODEL FOR LASER IGNITION 110

after 30 ML timesteps (with an in-prediction duration of 240µs).

6.4 Results
Here, we report results from ensemble kernel trajectory predictions made by the
present SDE-ML modeling framework on the present configuration. In this work, each
sample of initial kernel morphology condition Υ0 is used to generate an ensemble with
100 stochastic variations, i.e., approximately 100-fold larger than the experimental
ensemble.

Figure 6.3 shows instantaneous predictions from the SDE-ML model (in red)
that qualitatively captures kernel behavior seen in experimental measurements (in
grayscale) for (a) direct, (b) indirect, and (c) failed ignition phenomena. At time af-
ter laser deposition τ = 4µs, a small ignition kernel is observed at the three different
laser deposition locations, with a pressure wave that is surrounding the kernel. In
the direct ignition seen in Figure 6.3a, the kernel deposited in the central jet rapidly
transitions into a sustained flame within τ = 28µs and continues to propagate, which
is also seen with the SDE-ML model. In Figure 6.3b, we see that the kernel de-
posited outside the jet does not ignite the fuel/oxidizer mixture until approximately
τ = 140µs. After this time, the hot plasma ejected from the asymmetric kernel in-
teracts with the central jet, which causes a transition to a sustained flame with an
oblong morphology. This indirect ignition phenomenon highlights the influence of
kernel morphology in laser ignition, which is reasonably captured by the SDE-ML
model. In Figure 6.3c, we observe that the SDE-ML can also accurately capture the
absence of a sustained flame up until a long duration of τ = 500µs.

We examine the statistical behavior of SDE-ML ensemble predictions by compar-
ing the temporal evolution of mean kernel centroid positions against corresponding
measurements in Figure 6.4. These positions are overlaid on top of mean velocity
magnitudes and unit vectors. The SDE-ML model predicts trajectories that qualita-
tively agree with the measurements. Specifically, it can be seen that the kernels are
transported (i) downstream by the jet, and (ii) radially due to entrainment. Near
the central jet core (r < 0.5df,o), mean velocity trajectory predictions agree with the



CHAPTER 6. HYBRID PHYSICS-ML MODEL FOR LASER IGNITION 111

= 4 s = 28 s

(a) Direct ignition.

= 44 s

= 60 s = 76 s

= 4 s = 124 s

(b) Indirect ignition.

= 140 s = 156 s = 172 s

-2 -1 0 1 2
r/df, o [ ]

0

2

4

6

x/d
f,o

 [
]

= 4 s = 116 s

(c) Failed ignition.

= 244 s = 372 s = 500 s

SDE-ML

Figure 6.3: Comparisons of ignition kernel predictions from the SDE-ML model
against experimental measurements of direct/indirect/failed ignition for time after
later deposition τ .

experiment in time and position. However, we note that outside this range, quantita-
tive discrepancies are observed in the SDE-ML predictions. On average, the ignition
kernels predicted by the SDE-ML model in these locations are not transported as
deeply (radial differences up to 0.4df,o) into the jet as the averaged experimental
measurements, indicating an under-prediction of kernel centroid radial velocity by
the SDE-ML model. In addition, the kernels in these locations require up to 50%
more time to reach the same axial location, when compared to experimental mea-
surements. Sources of deviation in the kernel trajectory in this reduced-order model
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result from the potential discrepancies between LES input and real-world velocity.
LES improvements (including turbulence modeling, boundary condition treatment,
and grid refinement) would result in flowfields that transport the modeled kernel in
a more similar trajectory to the experiments. In addition, another source of discrep-
ancy is the 2D treatment of this 3D configuration, which captures the trajectory of
the kernel in a projected 2D plane. As such, any azimuthal velocity in the 3D con-
figuration will cause an apparent motion of the kernel towards and away from the
jet, which is not accounted for in the present modeling approach. Another potential
limitation in the current 2D approach is the absence of laser deposition angles within
the modeling framework. However, laser angle was not varied in the corresponding
experimental configuration [86], so examining the full extent of 3D ignition is beyond
the scope of the present work, and should be investigated in future work.
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Figure 6.4: Mean kernel position trajectory from ensemble SDE-ML predictions
against ensemble experimental measurements across time after laser deposition τ .
LES mean velocity magnitude (with translucent unit vectors) is also shown.

Nevertheless, this velocity treatment is still sufficient for capturing the probability
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of ignition time τig from the ensemble experiments shown in Figure 6.5. In another
reduced-order modeling study [94], successful ignition was determined by monitoring
the ignition kernel growth rate. Here, ignition time is defined as the time taken
for the kernel to exceed a growth rate of 0.2 mm2/s in both SDE-ML predictions
and experimental measurements. Estimated probabilities of the ignition time from
ensemble predictions and measurements show good agreement in the distribution
peak (∼20%) at approximately τig ≈ 10µs, which correspond to the large proportion
of direct ignition cases within the present ensemble. After τig ≈ 10µs, long-tailed
ignition time distributions are seen for both predictions and measurements, which
are a result of the delayed indirect ignition that is influenced by stochastic variations
of kernel interactions with the turbulent fuel/oxidizer mixture. Ensemble SDE-ML
predictions of τig possess a standard deviation of 123µs, which is within 18% difference
with measured standard deviation of 88µs.
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Figure 6.5: Comparison of normalized ignition time τig distributions from SDE-ML
predictions against measurements.

In this work, we map the probability of successful ignition with real data and
two augmented datasets. Real data consists of the segmented Schlieren data (stacked
with inert LES statistics), as described in Section 6.2. Since experimental ignition
tests were only performed for 21 different laser deposition locations, an augmented
dataset was generated with the purpose of estimating a spatially resolved ignition
probability map. This augmented kernel dataset was created by spatially translating
all ignited cells of a single frame of a kernel segment Υ0(τ = 4µs,x = 2df,o, r =
1.1df,o) by ∆xaug = xaug − xML

p (Υ0). This generates 1740 augmented initial kernel
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Figure 6.6: SDE-ML predictions of ignition probability Pig maps. Ensemble-averaged
experimental Schlieren measurements (along with measured ignition boundaries in
cyan) are shown in (a), while SDE-ML predictions without the stochastic component
(dW = 0) are shown in (b) and (c).

morphologies Υ0
aug that mimic kernels deposited with laser energy Elaser = 26 mJ at

locations 3 mm ≤ xaug < 30 mm and raug < 14 mm. These locations were chosen
to avoid interactions between the kernels and the domain boundaries, since laser
deposition does not typically occur near the combustor walls. A second augmented
dataset is created to evaluate SDE-ML performance when tested with unseen flowfield
conditions by reducing the LES velocity in the augmented kernel dataset by two-fold.

Figure 6.6a compares ignition probability maps predicted with real data against
experimental measurements in the 21 laser deposition locations. This spatially sparse
ignition probability map is shown on top of ensemble-averaged experimental Schlieren
measurements. Cyan circles are used to highlight the ignition boundary measured
from the experiments, which is defined here as the radial distance before ignition
probability decreases below unity. At the ignition boundaries, the SDE-ML model
predicts ignition probabilities of 0.72, 0.84, and 0.8 at axial locations x = df,o, 2df,o,
and 3df,o, respectively. Of the three ignition probabilities, only Pig(x = df,o) exceeds
the measured uncertainty of ±0.2. This under-prediction of ignition probability is
likely caused by the under-prediction of mean radial velocity magnitude observed in
Figure 6.4, which reduces the likelihood of the hot kernel interacting with the cold
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reactants near the central jet.
The ignition probabilities at three OOD laser deposition locations that lead to

direct (x = df,o, r = 0), indirect (x = 2df,o, r = 1.1df,o), and failed (x = df,o,
r = 1.3df,o) ignition are also evaluated. At these locations, the SDE-ML model
correctly predicts unity and zero probability for the direct and failed ignition cases,
respectively. For the indirect ignition case, a predicted ignition probability of P pred

ig =
0.5 is observed, which is within the uncertainty range of P exp

ig = 0.6± 0.1. Thus, the
SDE-ML model can predict the kernel ignition probability reasonably well at slightly
OOD deposition locations.

The spatially resolved ignition probability map predicted with the augmented
kernel dataset is shown in Figure 6.6b. Here, we compare SDE-ML predictions with
and without the stochastic component (dW = 0). Both approaches are seen to
generate a spatially coherent ignition probability map, even though its training data
does not extend beyond sparse laser deposition locations. However, we note that
without the stochastic component, the ML model can only generate deterministic
predictions, resulting in a binary probability map.

Figure 6.6c shows ignition probability maps predicted with the augmented kernel
dataset with velocity inputs reduced by two-fold. Above x > df,o, a smaller region
with unity ignition probability is observed with and without the stochastic compo-
nent, which is a result of lower mean radial velocities. Below x < df,o, the model
predicts only failed ignition when dW = 0 indicating that the predicted ignition ker-
nel loses hot plasma significantly before being transported to a reactive fuel/oxidizer
mixture. Whether this is physically plausible is uncertain within this work, given the
absence of measurements under these velocity conditions. We note that all ML-based
models cannot predict reliably with vastly OOD inputs [6]. Uncertainty quantifica-
tion [223, 224] could partially address this issue by providing further interpretability
on model confidence in the presence of unfamiliar inputs, and could potentially be em-
ployed for guiding additional experimental measurements. However, these methods
are active scientific pursuits that are currently beyond the scope of this chapter.
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6.5 Summary
This chapter introduced a reduced-order physics-embedded SDE-ML modeling frame-
work that employs simulation data and sparse ensemble measurements for statistically
characterizing ignition behavior within an experimental gaseous CH4/O2 model rocket
combustor configuration.

This SDE-ML framework was shown to qualitatively capture the evolution of
ignition kernels within rocket combustors. In particular, the SDE-ML model was
able to capture the influence of asymmetric kernel morphology on stochastic indirect
ignition. In addition, ensemble ignition time predictions showed reasonable statisti-
cal agreement with ensemble experimental measurements. Ensemble predictions of
mean kernel trajectory and ignition probability demonstrated qualitative agreement
with the ensemble measurements. Quantitative differences arose from limitations in
the treatment of kernel velocity (potential discrepancies in the LES input and 2D
treatment of this model). This resulted in errors in ignition probability at ignition
boundary and kernel position of up to 0.28 and 0.4df,o, respectively.

To demonstrate that this SDE-ML framework can develop reasonable predictions
when tested on unseen situations, we showed that the model reasonably captures igni-
tion probabilities associated with direct, indirect, and failed ignition modes at slightly
OOD laser deposition locations. The versatility of the SDE-ML model was further
evaluated with augmented datasets that mimic inputs for generating a spatially re-
solved ignition probability map under different velocity conditions. The SDE-ML
model can generate a spatially coherent ignition probability map, with only a train-
ing dataset consisting of ignition kernels deposited in sparse laser deposition locations.
However, we note that providing the model with vastly OOD inputs potentially results
in spurious phenomena.

These results highlight the potential and limitations in combining physics-based
modeling approaches with data-driven methods for leveraging sparse experimental
measurements and cost-effective non-reacting simulation data in capturing different
ignition modes within a complex multi-physics flow configuration.



Chapter 7

Conclusions and Future Work∗

7.1 Key Findings
This dissertation contributes methods and knowledge towards overcoming data-related
limitations within ML techniques that are employed towards scientific and engineering
applications, in the context of propulsion and multi-physics flows.

This limitation is directly addressed through the development of an accessible
framework for curating and distributing large datasets for multi-physics flows related
to propulsion. This resulted in BLASTNet 2.0 – a 2.2 TB public dataset contain-
ing 744 full-domain samples from 34 high-fidelity DNS configurations of turbulent
flows. We process this dataset for benchmarking the behavior of various deep learn-
ing approaches in turbulent SR problem. Through our scaling analysis, we provide
empirical measurements of the relationship between predictive performance with ML
model size and cost when trained with a large dataset. From the same analysis, we
also demonstrate that NN architecture design can matter significantly, especially for
smaller ML models, and the benefits of employing physics-based losses can persist at
moderate model sizes. These findings provide useful insights in the design of deep
learning models for multi-physics flow applications, while BLASTNet 2.0 provides a

∗This chapter contains select descriptions and discussions from the artificial intelligence (AI)
review paper by Ihme and Chung [225], with significant modifications made for this dissertation. M.
Ihme and W.T. Chung contributed equally to reviewing AI progress and applications.
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rich data resource for training and evaluating models for scientific and engineering
turbulent flow problems.

In problems where training data is not sufficient, such as in complex real-fluid
configurations, alternatives to deep learning can be considered. We examine the
opportunities offered by symbolic regression and random forest models through a
priori analysis of closure terms in inert and reacting DNS of turbulent transcritical
configurations. We find that these methods can provide benefits related to model
interpretability. Specifically, the feature importance score from the random forest, in
conjunction with interpretable weights in sparse symbolic regression, can be used to
inform the discovery of analytic expressions of SGS models.

One issue that can arise from insufficiently trained ML models is the presence
of OOD errors in the resulting predictions. We introduce a modeling approach that
ameliorates this issue by bounding potential OOD ML errors through dynamic com-
bustion submodel assignment. Through this approach, predictive errors are bounded
by the worst-performing domain knowledge-based model, which enables stable deploy-
ment of ML models within numerical simulations. Here, random forests are trained
to assign three different candidate combustion models within the shared LES domain
of a 2D model rocket configuration. A posteriori simulations employing this model-
ing approach demonstrated that this ML-integrated simulation approach can assist
in managing fidelity-cost trade-offs in high-fidelity simulations of turbulent reacting
flows.

We present another approach for integrating domain knowledge with ML for over-
coming limitations in obtaining costly simulation and experimental data of stochastic
multi-physics flow phenomena. Specifically, we introduce a physics-embedded SDE-
ML reduced-order modeling framework that relies on sparse ensemble measurements
and non-reacting simulation data for statistically characterizing ignition behavior
within a rocket combustor configuration. Here, we employ an SDE for representing
the turbulent transport of ignition kernels, while a deep learning model is used to
predict the time evolution of the ignition kernel morphology. This SDE-ML is able to
qualitatively capture different laser ignition modes, as well as the influence of asym-
metric kernel morphology on ignition behavior. Ignition timing, kernel position, and
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ignition probability predicted by the SDE-ML model are also shown to agree reason-
ably with quantitative experimental measurements. These results highlight potential
benefits in cost- and data-effective predictive modeling of complex multi-physics flows,
which can be obtained when combining ML with domain knowledge.

7.2 Recommendations for Future Research
This dissertation has demonstrated numerous approaches towards employing ML
techniques in applications involving multi-physics flows and propulsion systems. How-
ever, several open challenges (involving limited datasets and OOD errors) and oppor-
tunities (involving large datasets) still remain, which could be addressed by:

Diversifying Data and Benchmarks for Multi-Physics Flow Problems

We presented BLASTNet 2.0, in Chapter 3, which provides access to terabytes of
3D turbulent reacting flow data. While this work presents a sustainable framework
for curating large flow physics datasets, BLASTNet 2.0 only contains reacting flow
data for a select number of H2 and CH4, and is not sufficient for representing a wide
range of multi-physics flow conditions. Thus, future work should focus on increasing
the diversity of flow configurations with the BLASTNet framework. In addition,
BLASTNet 2.0 consists largely of decorrelated snapshots of statistically stationary
flow configurations. In order to extend BLASTNet towards ML tasks that involve
temporal dependency and dynamic behavior, future iterations of BLASTNet should
consider correlated temporal snapshots.

The sensitivity of certain ML models to variations in datasets (as formalized in
Equation (2.20)) also motivates the introduction of open benchmarks in order to
provide transparent and consistent insights into developed ML approaches. In Chap-
ter 3, we released an open benchmark with BLASTNet 2.0 data that provided insight
into effective deep learning design choices specifically for turbulent closure modeling
problem via ML-based SR. Given the growing number of ML applications related to
scientific discovery and modeling within multi-physics flows (as highlighted in Chap-
ter 1), the development of open benchmarks that cater to new learning tasks within
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multi-physics flows could lead to improved ML models for any new applications.

Towards ML Foundation Models for Multi-physics Flows

The availability of large datasets and public benchmarks for multi-physics flows could
lead to the development of foundation models [226] for solving a wide range of predic-
tive modeling problems with promising accuracy and cost-effectiveness, as has been
seen recently in the atmospheric sciences [227].

An ML foundation model is a general purpose ML model (typically with>1B train-
able parameters) that has been (i) pre-trained offline via self-supervised learning [228],
i.e., supervised learning with minimal labeling of large and diverse datasets (typically
terabyte-scale), which can then be (ii) fine-tuned, i.e., further offline training with
supervised transfer learning [229] involving smaller and more specific datasets for
tailored downstream applications. When compared to pre-training approaches, fine-
tuning techniques are reasonably matured, and can be completed with a few hours
on a single GPU processor [230]. Thus, promising directions that can proliferate ML
foundation models within a broader range of multi-physics flow domains would involve
the improvement of pre-training techniques via (i) discovering effective self-supervised
learning tasks and (ii) improving the cost-effectiveness of ML architectures – both for
fully utilizing large flow physics datasets (such as BLASTNet in Chapter 3).

Firstly, self-supervised learning enables ML models to harness large datasets in a
cost-effective manner by focusing training on information inherent within data struc-
tures (such as smoothness or continuity within fluid fields), instead of information
provided by costly labeled datasets. Previous studies [231, 232] have shown that
the predictive performance of fine-tuned models can benefit from the discovery of
new domain-specific self-supervised learning tasks for upstream pre-training. Within
multi-physics flows, self-supervised learning have begun to be explored, as seen with
super-resolution in this dissertation. Outside this work, experimental measurement
reconstruction [233, 234] and next-timestep prediction [28, 235] are promising self-
supervised learning tasks. However, we note that these previous efforts have largely
focused on demonstrating the utility of these self-supervised learning tasks without
any form of transfer learning, and there remains open opportunities in investigating
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the influence of these tasks on downstream fine-tuning performance.
While self-supervised learning techniques reduce manual efforts during data pro-

cessing, pre-training large deep learning models can still incur large computational
costs. Computational complexity of many popular deep learning operations (such as
in fully-connected, 2D convolution, and self-attention layers) can scale approximately
quadratically with input dimensions. Thus, the discovery of new mathematical op-
erations that can efficiently represent non-linear patterns is essential for leveraging
large datasets with foundation models. Promising developments in this direction
include state-space layers [236] (which uses generalized 1D convolution operations
to achieve linear complexity), and specialized matrix structures [237] (for achieving
sub-quadratic complexity). In relation to this, the benchmark tools presented in
Chapter 3 could be employed towards developing of future NN operations suited for
multi-physics flow data.

Further Integration of ML with Existing Flow Physics Approaches

This dissertation has explored the use of physics-based regularization (Chapter 3),
integration of ML within multi-physics flow solvers (Chapter 5), and hybrid physics-
ML reduced order modeling (Chapter 6). These efforts highlight opportunities for
further combining domain knowledge from multi-physics flows with ML. Future work
could involve the exploration of novel physics- and chemistry-based loss function
terms [158]. In addition, a wide range of analytical reduced-order modeling could be
combined with ML for predicting complex multi-physics flow phenomena.

Further integration of the ML model with multi-physics flow solvers via two-
way coupling could offer opportunities for online learning techniques that aid model
performance in OOD conditions. In Chapter 5, ML training was performed offline,
prior to simulation calculations. A pre-trained model was then coupled one-way
with the multi-physics flow solver for a posteriori calculations, i.e., the ML model
could affect the outputs from the multi-physics flow solver, but remained unaffected
by the multi-physics flow solver. Similar to work performed in more matured ML
domains [238], future efforts in two-way coupling could involve the use of unseen flow
conditions from a simulation for fine-tuning model parameters in-flight via online
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transfer learning [229] or reinforcement learning [239]. These efforts have begun to
show promise in multi-physics flow applications, including turbulence modeling [240]
and flow control [241]. Specific potential extensions of these efforts towards propulsion
applications would include introducing improvements to algorithm robustness [242]
for deployment in safety-critical systems, as well as accuracy and cost [243], especially
with challenging multiscale physical/chemical phenomena.

Further Investigations in Ameliorating and Understanding OOD Errors

A significant portion of this dissertation has been dedicated towards understanding
effects from OOD inputs. For example, in Chapter 6, we demonstrated that the appli-
cation of a deep learning regressor in OOD flow conditions could result in potentially
spurious ignition predictions. In order to deploy ML models in safety critical systems
encountered in propulsion domains, further work should be performed to understand
and quantify the limitations of ML approaches in OOD conditions. This could in-
volve the extension of ML-tailored uncertainty quantification techniques [244] that
can provide further insight on model confidence in the presence of unfamiliar inputs.
Improved understanding of deep learning models could also lead to better strategies
in reducing these OOD errors in these black-box approaches. A promising direction in
interpreting deep learning models involves the examination of their underlying math-
ematical operations, i.e. mechanistic interpretation [245], which has so far shown
some degree of success in small models and simple architectures.

Exploration of New Approaches for Flow Physics Discovery

ML can offer opportunities for the systematic discovery of trends, models, and phe-
nomena within multi-physics flows. In Chapter 4, we explored the employment of
interpretable ML methods for the discovery of closure models. One key result from
this chapter is the re-discovery of an SGS stress model (which was previously de-
rived through Taylor series expansion) through insights gained from interpretable
ML. The robustness of this proposed approach can be explored within a wider range
of flow physics configurations and closure problems. In addition, the potential of
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ML approaches for discovering trends within complex flows involving multiphase,
detonating, and hypersonic phenomena can be explored. This can involve the ap-
plication and discovery of methods beyond the supervised learning techniques shown
in this dissertation. More matured scientific domains have demonstrated the use
of reinforcement learning [239] for discovering new computational and mathematical
algorithms [246, 247], and genetic algorithms [248] for discovering analytical expres-
sions for physical phenomena [249], which can be extended to benefit computational
modeling of multi-physics flows in propulsion.



Appendix A

BLASTNet Supplementary
Documentation

A.1 Maintenance Plan and Long Term Preserva-
tion

The contributors to BLASTNet 2.0 are committed to maintaining and preserving this
dataset. Maintenance of this dataset will largely involve tracking and fixing issues
that might be discovered after release. To facilitate this, we host an issues webpage
(https://github.com/blastnet/blastnet.github.io/issues) for user feedback.
All data is shared via Kaggle, ensuring that the data will be preserved and available
in the long-term. In addition, our maintenance plan involves adhering to the FAIR
principles [156] for scientific data management, with the specific details as follows:

Findable All data are indexed and can be easily searched via both Kaggle and
BLASTNet platforms. To ensure that the data is findable, a http://schema.org

structured metadata is employed, as detailed in Appendices A.2 and A.3. All BLAST-
Net datasets share a global and persistent DOI at Zenodo: https://doi.org/10.

5281/zenodo.7242864.
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Accessible Both data and descriptive metadata are retrievable via the Kaggle
command-line API. This protocol is free and available at https://github.com/

Kaggle/kaggle-api, with authentication and authorization provided through a Kag-
gle account. We provide a bash script for users to download all data (shared in mul-
tiple repositories) at once with this API. Users can also download the data directly
from Kaggle repositories.

Interoperable The data and descriptive metadata use accessible formats that can
be read by standard python numpy and json packages. BLASTNet’s http://schema.

org structured metadata also references the structured metadata of each separate
BLASTNet repository (providing information on specific contributors and Kaggle
URLs). We have attempted to use accessible language when generating these meta-
data.

Reusable The descriptive metadata contains information on the flow configuration
(initial conditions, chemistry, numerics, and source publication). In addition, all Kag-
gle repositories employ a CC BY-SA NC 4.0 license. The structured http://schema.

org metadata provides rich information that passes the rich results test (https:

//search.google.com/test/rich-results). All data and descriptive metadata are
presented in consistent little-endian single-precision binaries and .json files, guaran-
teeing acceptable standards for fast I/O, sufficient floating-point precision, and broad
accessibility via widely-used python packages.

A.2 Additional BLASTNet 2.0 Details
BLASTNet 2.0 contains pre-processed DNS data shared via a network of Kaggle
repositories, with links consolidated at the landing page https://blastnet.github.

io.
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A.2.1 Data Format and Directory Structure

Data, generated from different multi-physics flow solvers initially exists in a range
of formats (.vtk, .vtu, .tec, and .dat) that are not readily formatted for training
ML models. Thus, we pre-process all generated data into a consistent and convenient
format consisting of physical and chemical data, descriptive metadata, and web meta-
data, along with instructions for reading the data. This information is summarized
in Figure A.1.

Figure A.1: Directory structure and reading instructions for an instance of a BLAST-
Net configuration.

Files on Flow Physics and Chemistry

All flowfield data are processed into a consistent format – little-endian single-precision
binaries that can be read with np.fromfile/np.memmap, as shown in Figure A.1. The
choice of this data format enables high I/O speed in loading arrays. As also shown
in Figure A.1, we also provide .json files (see Appendix A.2.1) that store addi-
tional information on configurations, contributors, solvers, and corresponding source
publications. Chemical mechanisms and transport properties are shared through
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Cantera [182] .cti/.xml/.yaml or Chemkin [250] fortran files. Thus, BLASTNet
data contains all information needed to reconstruct any derived auxiliary quantities
(such as vorticity, viscosity, turbulence closure terms, along with heat and chemical
transport coefficients) from the conservation equations.

Descriptive Metadata

The binary data described in Appendix A.2.1 contains information on physical and
chemical data, without much context. Details involving global information such as
configuration, boundary/initial conditions, solvers, related publications, and spatial
grid information, as well as local temporal information (if any) are provided through
an info.json file in each Kaggle repository. Listings 1 and 2 present the python

code used to generate global and local information in one example of info.json.

Structured Web Metadata

A http://schema.org metadata has been added to https://blastnet.github.io/

datasets, and tested with https://search.google.com/test/rich-results.

Reading Data

As shown in Figure A.1, BLASTNet data can be read by (i) loading the descriptive
metadata with the json package on python, and (i) using np.fromfile/np.memmap

to load and reshape the data.

A.3 Additional Momentum128 3D SR Dataset De-
tails

A.3.1 Data Format and Directory Structure

The Momentum128 3D SR Dataset contains velocity and density sub-volumes (see
Appendix A.3.1) extracted and processed from BLASTNet 2.0, along with descriptive
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Listing 1 Python command for generating global metadata for a BLASTNet Kaggle
repository.

metadata['global'] = {
"dataset_id": "waitongchung/inert-ch4o2-hit-dns",

"Nxyz": [129,129,129],
"snapshots": 98,
"variables": ["UX_ms-1","UY_ms-1","UZ_ms-1",

"P_Pa","T_K","RHO_kgm-3",
"YO2","YCH4"],

"compression": "None",
"grid": {"x": "./grid/X_m.dat",

"y": "./grid/Y_m.dat",
"z": "./grid/Z_m.dat"},

"numerics": {"spatial": "4th order central-differencing
with 2nd order ENO",

"temporal": "3rd-order SSP-RK3 (non-stiff)
and semi-implicit ROWPLUS (stiff)",

"solver": "CharlesX"},
"bc": "Periodic in x-, y-, and z-directions.",
"ic": {"U": "HIT Von Karman Pao with Re_t = 80 and

integral length-scale of 62.5E-6m",
"T [K]": 300,

"P [Pa]": 101325,
"Mixture": "CH4-O2 inert branch from 1D

cantera counterflow calculations."},
"doi": "https://doi.org/10.1016/j.combustflame.2021.111758",

"contributors": "Wai Tong Chung and Matthias Ihme",
"description": "Compressible Inert CH4-O2 Homogeneous

Isotropic Turbulence DNS",
"chem_thermo_tran": {"description": "FRC and Mixture-Averaged Transport

with constant lewis number",
"cantera_xml": "./chem_thermo_tran/bfer.xml"}

}

metadata (Appendix A.3.1), web metadata (Appendix A.3.1), and instructions for
reading the data in Appendix A.3.1.

Files on Flow Physics

All 2000 sub-volumes (labels with 128× 128× 128 number of voxels) of density and
three velocity components [ρ,ui] are also presented in little-endian single-precision
binary format, similarly to BLASTNet 2.0 (see Appendix A.2.1), which can be read
with np.fromfile or np.memmap. This is shown in Figure A.2, which also shows the
five data splits described in Section 3.2.2. In addition, Favre-filtered features for 8,
16, and 32× SR are also provided, along with pre-trained weights from all models
reported in this study. The sub-volume files are named with <Variable Name and
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Listing 2 Python command for generating local metadata for a BLASTNet Kaggle
repository.

metadata['local'] = [
{"id": 0,

"time [s]": 6.88389e-06,
"UX_ms-1 filename": "./data/UX_ms-1_id000.dat",
"UY_ms-1 filename": "./data/UY_ms-1_id000.dat",
"UZ_ms-1 filename": "./data/UZ_ms-1_id000.dat",
" P_Pa filename": "./data/P_Pa_id000.dat",

"T_K filename": "./data/T_K_id000.dat",
"RHO_kgm-3 filename": "./data/RHO_kgm-3_id000.dat",

"YO2 filename": "./data/YO2_id000.dat",
"YCH4 filename": "./data/YCH4_id000.dat"},

{"id": 1, ...},
...,

{"id": 97, ...}
]

40 pre-trained models  of different sizes used in this work,
along with a .csv file with hyperparameters for loading models.

Labels with the five splits mentioned in the main paper. 

Features at 8, 16, and 32× SR.

Descriptive metadata

Figure A.2: Directory structure of the Momentum128 3D SR dataset.

SI Unit>_id<hash value>.dat, where the hash value provides a unique ID based
on the spatial coordinates of the sub-volume location and the index of configuration.

Descriptive Metadata

In addition to the sub-volumes, we provide .csv files that provide information on hash
ID, Kaggle ID, short configuration description, k-means cluster index, and spatial grid
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size for the different dataset splits used in this work.

Structured Web Metadata

A http://schema.org metadata has been added to https://blastnet.github.io/

datasets, and tested with https://search.google.com/test/rich-results.

Reading Data

Similar to BLASTNet 2.0, this data can be read by using np.fromfile/np.memmap

to load and reshape the data.
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