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 A B S T R A C T

Thermoacoustic instabilities are a challenge in the design and operation of combustion systems. Addressing 
this challenge is becoming even more critical with the development of fuel-flexible combustors capable of 
operating with hydrogen and other sustainable fuel sources. While active control is a well-known method for 
damping combustion instabilities, identifying appropriate control parameters becomes increasingly complex 
in the presence of changing fuel composition and operating conditions. In this work, we present a model-
free deep reinforcement learning (RL) technique to adaptively tune an active control system. We demonstrate 
that the RL-based active control system is able to adaptively suppress thermoacoustic instabilities over an 
extended range of operating conditions with minimal training. The demonstration is performed on a laboratory-
scale bluff-body-stabilized premixed methane/hydrogen/air flame, at equivalence ratios ranging from 0.5 to 
stoichiometric, and with up to 80%vol hydrogen in the fuel. After training the RL system on a single operating 
condition, combustion instabilities can be mitigated over the entire operating range of the burner. Extending 
the training to three additional operating conditions allows the RL control system to fine-tune its policy and 
further reduce thermoacoustic instabilities, achieving a sixfold reduction in the acoustic source term over 
most of the operating range. We observe a reduction of up to 40 dB in acoustic pressure over 50% of the 
operating range. The proposed approach offers a promising path towards more efficient, adaptive control 
systems for thermoacoustic instabilities, demonstrating the potential of RL to address the operational challenges 
of fuel-flexible combustion systems.

Novelty and Significance Statement
We show the first experimental demonstration of a reinforcement learning-based control method for ther-

moacoustic instabilities. The experiments are performed on a laboratory-scale premixed methane/hydrogen/air 
bluff-body burner, which exhibits strong combustion instabilities over a wide range of operating conditions. 
Building upon a conventional control system, which utilizes a pressure sensor, an acoustic driver, and a gain- 
and phase-shift controller, the reinforcement learning-based controller is able to dampen instabilities over the 
entire operating range. This is achieved while training the controller on a single operating condition. Extending 
training to a total of four distinct operating conditions further fine-tunes the control policy and yields an 
additional reduction in the acoustic pressure amplitude. This research illustrates the potential of reinforcement 
learning for robust control in combustion systems - capable of addressing the challenges of complex combustion 
physics, adapting to unseen conditions, and merging information from heterogeneous sensors.
1. Introduction

Thermoacoustic instabilities are a major challenge in the design 
and operation of combustion systems, ranging from jet and rocket 
engines to industrial furnaces and stationary gas turbines [1]. Thermoa-
coustic instabilities typically occur due to the feedback loop between 
acoustic pressure fluctuations, injector response, and unsteady heat 

∗ Correspondence to: Stanford University – Dept. of Mechanical Engineering, Bldg 530 Room 202, 440 Escondido Mall, Stanford CA 94305, USA.
E-mail addresses: gvignat@stanford.edu (G. Vignat), mihme@stanford.edu (M. Ihme).

release rate, leading to undesirable effects, such as reduced efficiency, 
higher emissions, and structural damage to the combustor [2]. In-
creasingly stringent emission requirements have led to a shift towards 
lean-premixed combustors, which are more susceptible to thermoacous-
tic oscillations due to their sensitivity to acoustic perturbations [3] and 
higher power densities compared to conventional combustors [4]. With
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Nomenclature

Latin

𝑎 Agent action
 Action space
 Batch of transition tuples
 Replay buffer
𝐷𝑐 Diameter of combustor tube (mm)
𝑒′𝑠 Synthesized acoustic signal
𝑓 Frequency (Hz)
𝑓0 Fundamental frequency of the thermoacous-

tic oscillation (Hz)
𝑔 Gain of the controller
𝐼 Chemiluminescence intensity
𝐽 Objective function
𝐿𝑐 Length of combustor tube (mm)
𝑚̇ Mass flow rate (kg s−1)
𝑁𝑠 Maximum number of environment steps
 Transition dynamics
𝑝′ Acoustic pressure (Pa)
𝑝0 Atmospheric pressure (Pa)
𝑄 Q-critic network
𝑄̇ Volumetrically integrated heat release rate 

(W)
𝑟 Reward
𝑅𝐼 Rayleigh integral (W)
𝑠 State vector of the environment
 State space
𝑆inj Injector cross-sectional area (m2)
Trec Duration of data acquisition for state vector 

estimation (s)
Twait Wait time before sampling signals (s)
𝑢𝑏 Injector bulk velocity (ms−1)
𝑉 Value network
𝑋H2

Hydrogen volume fraction (fuel)
Greek

𝛽 Smoothing factor of the target value network
𝛾 Heat capacity ratio
𝜆 Learning rate of gradient descent
𝛷 Trainable weights of Q-critic network
𝜙 Equivalence ratio
𝜋 Policy network
𝜓 Trainable weights of policy network
𝜌𝑢 Density of unburnt reactants (kg∕m3)
𝜏 Time delay of the controller (s)
𝜃 Trainable weights of value network
𝜃 trainable weights of target value network
𝜉 Discount factor
Subscripts and Superscripts
⋅ Mean value
∥ ⋅ ∥ Magnitude
⋅̃ Evaluated with the current policy
ang [⋅] Phase angle
rms Root mean square
Abbreviations

𝑎.𝑢. Arbitrary unit
2 
CDF Cumulative distribution function
CPSD Cross power spectral density
FLAME Flame environment
FPGA Field programmable gate arrays
HEX Heat exchanger
MFC Mass flow controller
NN Neural network
PMT Photo multiplier tube
PSD Power spectral density
RL Deep reinforcement learning
SAC Soft actor-critic

the transition towards decarbonization in the energy and transporta-
tion sectors, there is also a growing interest in using carbon-free and 
sustainable fuels, such as hydrogen (H2), ammonia (NH3), and other 
synthetic fuels to power stationary gas turbines and jet engines. Hydro-
gen in particular exacerbates the challenges posed by thermoacoustic 
instabilities due to its high flame speed, higher power density, and 
the increased susceptibility of the flame to acoustic and convective 
perturbations [5,6].

Over the past decades, various methods have been proposed to 
suppress thermoacoustic instabilities, broadly categorized into passive 
and active methods [2]. Passive methods rely on altering either the 
acoustic properties of the combustor, or the flame response to acous-
tic perturbations. Acoustic methods passively mitigate thermoacoustic 
instabilities using baffles and other devices to modify the shape of 
acoustic eigenmodes [7], by controlling the acoustic coupling between 
cavities [8,9], or by increasing acoustic damping using perforated liners 
or resonators [10]. Tuning the flame response to dampen the thermoa-
coustic source term can be achieved by a variety of schemes: modifying 
the topology of the flame by changing the injector geometry [11], fuel 
composition [12], or fuel staging [13], which may affect combustion 
performance and pollutant emissions; or by creating a destructive 
interference in the flame and injector response to acoustic perturba-
tions [14,15]. These passive control methods have been successfully 
integrated in practical systems [2,16], but limitations, such as weight, 
increased pollutant emissions, and degradation of other critical perfor-
mance metrics can restrict their application. In addition, many of these 
passive methods must be tuned to target specific eigenfrequencies of the 
combustor, which reduces their range of applicability and adaptability 
for changing operating conditions and fuel composition.

In active control schemes, sensors are used to monitor the state of 
the flame in order to synthesize an input signal to actuators [17,18]. 
Active control systems fall into two broad categories depending on 
their response time [18]. ‘‘Slow’’ control systems have response times 
on the order of 100ms or slower and essentially act as adjustable 
passive control schemes. In contrast, ‘‘fast’’ control systems respond 
to input perturbations within timescales much shorter than the period 
of the thermoacoustic oscillation. The present work focuses on ‘‘fast’’ 
control of thermoacoustic. Of particular relevance to the present study 
are early experimental demonstrations of active control of combustion 
instabilities using microphones, acoustic drivers, and phase-shift con-
trollers [19,20]. In these control schemes, the signal 𝑒′𝑠 used to drive 
the acoustic actuator is given by 

𝑒′𝑠(𝑡) = 𝑔𝑝′(𝑡 − 𝜏), (1)

where 𝑝′ is the acoustic pressure measured by the microphone, 𝑔 is the 
controller’s gain parameter, and 𝜏 is its delay parameter. This method 
has been extended to multiple actuators [21], and demonstrated in 
full-scale industrial applications [22].
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Thermoacoustic oscillations are known to be particularly sensitive 
to even small changes in combustor geometry and operating condi-
tions [23]. Given the growing emphasis on fuel flexibility in propulsion 
and power generation [5,6], the versatility of active control systems, 
whose response can be optimized by tuning control parameters, is 
an attractive prospect. This has sparked renewed interest towards the 
development of adaptive control schemes for thermoacoustic applica-
tions. Early attempts by Demayo et al. [24] focused on developing a 
robust control system that utilizes a stack of feedback sensor to monitor 
both thermoacoustics and pollutant emissions. This approach proved 
effective across different configurations, demonstrating the ability to 
optimize the system performance within 10 to 15 min. Liu et al. [25] 
used linear genetic programming to simultaneously suppress thermoa-
coustic instability and reduce emissions through modulation of the 
fuel stream. Dharmaputra et al. [26] used Bayesian optimization to 
optimize the parameters of a phase-shift controller in simulations and 
experiments, demonstrating the convergence to the global optimum for 
the controller’s parameters. Additionally, their framework allowed to 
constrain the final acoustic pressure below a specified threshold and 
enabled knowledge transfer across different operating conditions. How-
ever, Bayesian optimization schemes do not adapt to unseen conditions 
and require re-running the optimization process, which can limit their 
deployment for real-time applications [27].

Over the past decade, deep reinforcement learning (RL) has demon-
strated significant advances across various applications, including
robotics control [28], drug discovery [29], natural language process-
ing [30], flow control [31,32] and combustion [33–35]. RL integrates 
deep neural networks to handle high-dimensional state and action 
spaces, enabling the model to learn more complex representations from 
multi-modal inputs. Compared to Bayesian methods, RL is scalable 
and capable of handling larger state and action spaces. It has the 
advantage of dynamically adapting to unseen conditions and uncertain 
environments in contrast to conventional approaches. For example, 
Alhazmi and Sarathy [36] showed, on a reduced-order computational 
thermoacoustic model, that soft actor-critic (SAC), a model-free RL 
approach, was able to adjust the parameters of a phase-shift controller, 
and that SAC outperformed other control methods, such as extremum 
seeking control, H-infinity, and self-tuning regulator. The numerical re-
sults from their work illustrate the potential of using RL for suppressing 
combustion instabilities.

In the present work, we mitigate thermoacoustic instabilities in 
a laboratory-scale turbulent premixed burner, operated over a wide 
range of equivalence ratio and CH4/H2 mixing ratios, using a SAC-
based adaptive control framework. Specifically, the objectives of this 
research are (1) to demonstrate experimentally the use of RL in a real-
time combustion application; (2) to develop a highly adaptive control 
framework that is capable of dampening combustion instabilities over a 
large range of operating conditions; and (3) by developing this control 
framework, to address the technical challenges posed by thermoacous-
tic instabilities in fuel-flexible combustors that operate across a wide 
range of CH4/H2 fuel mixtures.

The structure of this article is outlined as follows: Section 2 presents 
a detailed description of the experimental configuration. Section 3 
describes the thermoacoustic behavior of the burner in the absence of 
active control, providing a baseline for further discussion. In Section 4, 
we introduce the SAC model and present the active control framework. 
The results from training and testing the RL-SAC model are discussed 
in Section 5. Finally, Section 6 concludes the article with a summary 
of the key contributions of this work.

2. Experimental methods

This section discusses the key components of the experimental 
setup, which is used to evaluate the effectiveness of our adaptive 
control policy.
3 
2.1. Burner setup

Experiments are conducted on a fully premixed turbulent bluff body 
burner, which is schematically shown in Fig.  1. This burner closely 
resembles experimental rigs investigated at Cambridge University [37] 
and the Norwegian University of Science and Technology (NTNU) [38].

Methane (Linde, Danbury, CT, USA, > 99% purity), hydrogen (Linde, 
Danbury, CT, USA, > 99.99% purity) and laboratory clean dry air are 
premixed far upstream of the burner using an array of mass flow 
controllers (MFCs, Alicat Scientific, Tucson, AZ, USA, combined ac-
curacy better than 0.8%). The reactants are not pre-heated and all 
experiments are conducted at ambient pressure. The mixture enters a 
settling plenum through four equally-spaced ports before passing into 
the injector through 72 ports, each having a diameter of 1mm. The 
injector consists of a 19mm-diameter cylindrical tube, with a 5mm-
diameter inner rod. A 45◦ conical bluff-body, made of 304L stainless 
steel, is used to anchor the flame with a diameter of 12.7mm at the 
combustion chamber backplane. The bluff body assembly is centered 
using three grub screws located 51mm upstream of the exit plane. The 
combustion chamber consists of a transparent quartz tube with an inner 
diameter 𝐷𝑐 = 70mm and length 𝐿𝑐 = 305mm.

2.2. Sensors

Combustion instabilities are commonly characterized by measuring 
the pressure fluctuations 𝑝′ and volumetrically integrated heat release 
rate (HRR) 𝑄̇ in the flame region. In the present work, acoustic pressure 
fluctuations near the dump plane of the burner are measured using a 
high-dynamic range 1∕4′′ pressure field condenser microphone (model 
378C10, PCB Piezotronics, Depew, NY, USA), connected to a model 
482C15 signal conditioner (PCB Piezotronics, Depew, NY, USA). The 
microphone is placed on a non-reflecting semi-infinite water-cooled 
acoustic waveguide, which follows the design described by Rajen-
dram Soundararajan et al. [39]. This waveguide introduces an acoustic 
delay of approximately 2ms. To estimate the HRR, two photomulti-
plier tubes (PMTs, model H11902-110, Hamamatsu photonics, Hama-
matsu, Japan) with a cut-off frequency of 20 kHz are used to record 
volume-integrated chemiluminescence from the flame. In the perfectly 
premixed flames investigated in the present work, time-resolved chemi-
luminescence measurements provide a qualitative indicator of the in-
stantaneous heat release rate of the flame and, to some extent, allow to 
infer the equivalence ratio of the flame [40]. The first PMT is equipped 
with an optical bandpass filter with a center wavelength of 310 nm and 
a full width at half maximum (FWHM) of 10 nm (Asahi spectra, Tokyo, 
Japan) to record chemiluminescence from OH∗ radicals in the flame. 
The second PMT is equipped with a 430 nm-centered optical bandpass 
filter (FWHM 10 nm, Asahi Spectra, Tokyo, Japan) to monitor CH∗

chemiluminescence. Signals from the microphone and both PMTs are 
recorded on a National Instrument BNC-2110 data acquisition card at 
a sampling rate of 40 kHz. We also perform chemiluminescence imaging 
to examine the flame shape and its dynamics. The imaging setup and 
results are shown in Appendix  A.

3. Thermoacoustic behavior of the burner

Even though self-excited thermoacoustic instabilities in confined 
premixed bluff-body-stabilized CH4/H2/air flames have been stud-
ied [38,41–43], the pronounced sensitivity of thermoacoustic insta-
bilities to burner geometry and boundary conditions [23] warrants 
a thorough characterization of the thermoacoustic behavior of this 
specific burner across its operating range in order to establish a baseline 
for the active control results discussed in Section 5.

Fig.  2 illustrates a typical acoustic pressure signal recorded during 
a thermoacoustic instability. The acoustic pressure signal is harmonic, 
at a frequency close to 𝑓0 ≈ 500Hz, marked with a red dot in the power 
spectral density in Fig.  2, corresponding to the first longitudinal mode 
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Fig. 1. Experimental setup of lab-scale burner. The RL agent operates on a standard desktop computer with a built-in data acquisition card. It communicates the 
control parameters (gain 𝑔 and phase shift 𝜏) to the real-time control loop, which operates on a field programmable gate array (FPGA) device. MFC: mass flow 
controller; PMT: photomultiplier tube; HEX: heat exchanger.
Fig. 2. Acoustic pressure signal measured by the microphone during a ther-
moacoustic oscillation. The burner was operated at a representative condition, 
𝑢𝑏 = 22.5m s−1, 𝜙 = 0.8, and 𝑋H2

= 55%. Pressure signal in the time 
domain (top) and power spectral density of the pressure signal (bottom). The 
red circle and red dashed lines illustrate the fundamental frequency of the 
thermoacoustic oscillation. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.)

of the combustion chamber. In what follows, we report the amplitude 
and frequency 𝑓0 of the instability based on the maximum of the power 
spectral density of the acoustic pressure measured at the combustor 
backplane.

As a first step to characterize the burner, we examine its thermoa-
coustic behavior as a function of two key operating parameters: the 
equivalence ratio 𝜙 and the hydrogen volume fraction in the fuel 𝑋H2
while keeping the bulk velocity of the reactants through the injection 
4 
system constant at 𝑢𝑏 = 𝑚̇∕
(

𝑆inj𝜌𝑢
)

= 22.5m s−1, with 𝑚̇ the reactant 
mass flow rate, 𝑆inj the cross-sectional area of the injection system at 
the dump plan, and 𝜌𝑢 the density of the unburnt reactants. 𝜙 and 𝑋H2
are known to affect the flame shape, length, and angle in this type 
of burner, therefore significantly affecting the flame transfer function 
and the thermoacoustic stability of the burner [38]. This is ideal to 
characterize an adaptive control scheme. The results are shown in 
stability maps in Fig.  3 in which we report the pressure amplitude 
at the fundamental frequency (Fig.  3(a)), the frequency of the pres-
sure fluctuations (Fig.  3(b)), and the Rayleigh integral (Fig.  3(c)) of 
thermoacoustic oscillations as a function of operating conditions. The 
thermoacoustic source term, also known as Rayleigh integral 𝑅𝐼 , is 
calculated as the contribution of the heat release rate to the acoustic 
power radiated by the flame [44,45]: 

𝑅𝐼 =
𝛾 − 1
𝛾

𝑄̇
 ∫



𝑡=0

𝑝′

𝑝0

𝐼 ′OH∗

𝐼OH∗
𝑑𝑡, (2)

where ⋅′, ⋅ , respectively, denote fluctuations and mean values of the 
signal, 𝛾 is the heat capacity ratio, 𝑄̇ is the total time-averaged heat 
release rate of the flame, 𝐼OH∗  is the integrated OH* chemiluminescence 
emission of the flame, assumed to be proportional to the instantaneous 
heat release rate for this premixed flame, and 𝑝0 is the atmospheric 
pressure.   is the integration time used for the calculation. We compute 
𝑄̇ using the reactant mass flow rates while assuming complete combus-
tion. High values of 𝑅𝐼 are observed during combustion instabilities 
characterized by high-amplitude pressure fluctuations that are in phase 
with the unsteady heat release. In contrast, under thermoacoustically 
stable conditions, the acoustic source term remains low and close to 
zero, indicating reduced fluctuation amplitudes and weak coupling 
between pressure oscillations and unsteady heat release.

The amplitude of the acoustic pressure fluctuations near the com-
bustor dump plan, Fig.  3(a), shows a strong dependency on 𝑋H2

, 
increasing from approximately 110 dBSPL at the fundamental frequency 
with pure CH4 to 150 dBSPL for operation at higher H2 mixture, 
𝑋H2

≳ 40%. This increase in acoustic pressure level is due to a 
supercritical Hopf bifurcation, a common occurrence in thermoacoustic 
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Fig. 3. Stability maps. (a) Acoustic pressure amplitude at the fundamental frequency, measured at the combustion chamber’s dump plane [dBSPL]; (b) fundamental 
frequency of the instability 𝑓0 [Hz]; (c) Rayleigh integral 𝑅𝐼 [W]. In (b), gray color is used to indicate that no prominent peak is found in the PSD, due to the 
absence of thermoacoustic instabilities.
Fig. 4. Acoustic pressure fluctuations recorded near the backplane of the combustor for 𝑢𝑏 = 22.5m s−1 and 𝜙 = 0.8, with increasing hydrogen enrichment in the 
fuel: (a) 𝑋H2

= 0; (b) 𝑋H2
= 40%; (c) 𝑋H2

= 41%; (d) 𝑋H2
= 43%; (e) 𝑋H2

= 50%; (f) 𝑋H2
= 80%.
systems [23], leading to a limit-cycle thermoacoustic instability as 
𝑋H2

 is increased. The transition between stable and unstable operation 
follows a parabolic shape in 𝑋H2

− 𝜙 space. This is consistent with the 
Rayleigh integral, Fig.  3(c), which features high values in the unstable 
region. The frequency of the instability spans the range between 480 ≲
𝑓0 ≲ 550Hz, Fig.  3(b), corresponding to the first longitudinal mode of 
the combustion chamber, 𝑓1L ≈ 𝑐∕[4(𝐿𝑐 +0.4𝐷𝑐 )] ≈ 525Hz. 𝑓0 increases 
with increasing 𝑋H2

 and 𝜙, most likely due to a higher temperature 
and sound speed within the combustion chamber and changes in the 
flame’s describing function [38,46].

To examine in more detail the transition from stable to unstable 
operation, we keep both the injector bulk velocity and equivalence 
ratio constant at 𝑢𝑏 = 22.5m s−1 and 𝜙 = 0.8, and examine the effect 
of 𝑋H2

 as the control parameter. At this condition, 𝑋H2
≳ 42% are 

thermoacoustically unstable conditions. This trend is almost identical 
to the results by Aguilar et al. [47] in a similar configuration with a 
shorter and narrower combustion chamber.

As 𝑋H2
 is increased, the flame gradually shortens and transitions 

from a tulip shape at 𝑋H2
≲ 30% to a V-shape at 30% ≲ 𝑋H2

≲
65%, and finally to a M-shape, 𝑋H2

≲ 65%, see Appendix  A. In Fig. 
4, characteristic acoustic pressure time traces are shown. Acoustic 
pressure fluctuations remain low at 𝑋H2

≤ 40%, until short, higher 
amplitude ‘‘bursts’’ are observed at 𝑋H2

= 41% (Fig.  4(c)). At 𝑋H2
= 43%

(Fig.  4(d)), acoustic oscillations are sustained, but present cycle-to-
cycle amplitude variations. These cycle-to-cycle variations, observed in 
Fig.  4(c–d), are likely one of the main reasons why the acoustic pressure 
fluctuations appear to gradually increase in the transition region in Fig. 
3. At 𝑋H2

≳ 50%, the thermoacoustic oscillations exhibit a limit cycle 
behavior.
5 
The flame shape, its evolution as a function of 𝑋H2
, and its impact 

on the thermoacoustic behavior of the burner are further discussed in 
Appendix  A.

4. Active control using RL

Following the characterization of the thermoacoustic behavior of 
our test rig, we now discuss the implementation of active control 
using RL. RL is a subfield of ML in which an agent learns to make 
optimal decisions in an environment by receiving feedback in the form 
of rewards or penalties [33,48]. The goal is to learn a policy that 
maximizes the cumulative reward over time.

The RL problem can be formulated as a Markov decision process, 
defined by a tuple ( ,, 𝑃 , 𝑟), where the state space  and action 
space  are continuous. The reward function 𝑟 quantifies the immediate 
feedback received by the agent after taking an action. The transition 
dynamics is governed by 𝑃 , which defines the conditional probability 
distribution of the next state given the current state and action. The 
agent interacts with the environment over discrete time steps, generat-
ing trajectories 𝜏traj = ([𝑠, 𝑎, 𝑟]0, [𝑠, 𝑎, 𝑟]1,… , [𝑠, 𝑎, 𝑟]𝑛), where each action 
𝑎𝑡 is selected according to the policy 𝜋 as a function of the state 𝑠𝑡, 
𝑎𝑡 ∼ 𝜋(𝑎𝑡 ∣ 𝑠𝑡). The objective of RL is to find an optimal policy 𝜋∗ that 
maximizes the expected cumulative reward, 
𝜋∗ = argmax

𝜋
E(𝑅 ∣ 𝜋), (3)

where 𝑅 =
∑∞
𝑛=0 𝜉

𝑛𝑟𝑛 represents the long-term cumulative reward in 
which the future rewards are compounded over time with discount 
factor 𝜉 ∈ [0, 1]. Generally, to quantify 𝑅, RL relies on the state value 
function (𝑉 ) and state–action value function (𝑄) [49]. The state value 
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Fig. 5. Block diagram illustrating the control loop used in the present work.
function estimates the expected cumulative reward starting from state 
𝑠 and thereafter following policy 𝜋, 
𝑉 𝜋 (𝑠) = E [𝑅 ∣ 𝑠, 𝜋] . (4)

It measures the long-term benefit of being in state 𝑠 under policy 𝜋, 
which enables comparisons between states in terms of long-term future 
rewards. Similarly, the state–action value function, also referred to as 
the Q-value, estimates the expected cumulative reward after taking 
action 𝑎 in state 𝑠 and subsequently following policy 𝜋, 
𝑄𝜋 (𝑠, 𝑎) = E [𝑅 ∣ 𝑠, 𝑎, 𝜋] . (5)

RL models can be broadly categorized into two main methods: 
model-free and model-based approaches [33]. In contrast to model-
based RL, which utilizes an explicit model for the behavior of the 
system, 𝑃 (𝑠𝑡+1 ∣ 𝑠𝑡, 𝑎𝑡), model-free methods directly learn a policy func-
tion through trial-and-error interactions with the environment [33]. 
Although this approach could potentially lead to high sample ineffi-
ciency compared to a model-based approach, it is more robust and 
favorable for challenging and difficult-to-model environments, such 
as thermoacoustically unstable combustion systems. Therefore, we use 
model-free RL in the present work.

In this section, we begin by describing the active control system, 
detailing its components and the environment setup. Then, we intro-
duce the Soft Actor-Critic (SAC) agent, the RL algorithm employed for 
suppressing the combustion instabilities, explaining its architecture and 
training process.

4.1. Active control system

The present work uses the commonly employed microphone–loud
speaker–phase-shift-controller architecture [19,20] for the active con-
trol of thermoacoustic instabilities. The block diagram of this system 
is shown in Fig.  5. The operating principle of this controller is to 
generate a synthetic acoustic wave using the actuator, which excites the 
flame almost in opposite phase to the pressure oscillation of the ther-
moacoustic instability, leading to destructive interference. The optimal 
values of the control parameters 𝑔 and 𝜏, see Eq. (1), are a function of 
the flame transfer function, of the burner’s acoustic response function, 
and of the transfer functions of the measurement chain and actuator. 
Consequently, the optimal values of 𝑔 and 𝜏 change as a function of the 
operating condition, 𝜙 and 𝑋H2

. In the present work, we extend this 
controller architecture by dynamically tuning 𝑔 and 𝜏 during burner 
operation using a RL approach.
6 
Fig. 6. Acoustic pressure traces (top) and power spectrum measured at 𝜙 = 0.9
and 𝑋H2

= 70% under different control conditions. In the ‘‘fixed controller’’ 
case, the control parameters are fixed and set to 𝑔 = 1.0 and 𝜏 = 0.46ms.

The synthetic acoustic wave is generated using a compression horn 
driver (model D250-X, JBL, Los Angeles, CA, USA, with a frequency 
response from 0.4 to 9 kHz), directly connected to the injector tube 
using a catenoidal horn adaptor as illustrated in Fig.  1. The control 
signal to the loudspeaker is amplified using a KM750 audio amplifier 
(Behringer, Willich, Germany). The signal 𝑒′𝑠 is synthesized by a real-
time FPGA instrument (Moku:Go, Liquid Instruments, Lyneham, ACT, 
Australia, response time ≤ 14 μs) using Eq. (1).

Before training the RL agent, we evaluate the control setup using a 
‘‘fixed controller’’, which uses fixed control parameters 𝑔 and 𝜏, Fig.  6. 
The ‘‘no control’’ case refers to the self excited instability. At 𝜙 = 0.9
and 𝑋H2

= 70%, the acoustic pressure exhibits substantial harmonic 
oscillations, with a 2 kPa amplitude. To suppress these oscillations, 
we manually tune the controller, and operate it with fixed values of 
𝑔 = 1.0 and 𝜏 = 0.46ms. These parameters are found by trial and error 
to be optimal for suppressing oscillations at this operating condition. 
This ‘‘fixed controller’’ will be used as a baseline for comparison in 
subsequent analysis, Section 5.
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4.2. Environment for combustion instability control

In RL, the environment represents the external system with which 
the RL agent interacts. In this work, the environment is shown in Fig. 
5 and includes the burner with an active flame, sensors, actuators, 
and gain-delay function. The RL agent is implemented on a standard 
desktop computer. When the agent takes a new action, it updates the 
values of the control parameters 𝑔 and 𝜏 on the FPGA board. This occurs 
at approximately 2Hz.

Acoustic pressure 𝑝′, and chemiluminescence 𝐼OH∗  and 𝐼CH∗  sig-
nals are recorded over a set period of time, Trec. These signals are 
pre-processed to provide a comprehensive characterization of the en-
vironment to the RL agent: eight statistical quantities are computed 
to construct the environment’s state space 𝑠𝑡 ∈  at time 𝑡, fusing 
information from multiple heterogeneous sensors and providing a mul-
tifaceted characterization of the instability’s behavior. 𝑠𝑡 is represented 
as a vector in R8:

• root mean square amplitude of the acoustic pressure, 𝑠𝑡,0 = 𝑝′rms;
• root mean square of chemiluminescence signals, 𝑠𝑡,1 = 𝐼 ′OH∗ ,rms
and 𝑠𝑡,2 = 𝐼 ′CH∗ ,rms;

• mean value of the chemiluminescence signals, 𝑠𝑡,3 = 𝐼OH∗ , and 
𝑠𝑡,4 = 𝐼CH∗ , as well as their ratio, 𝑠𝑡,5 = 𝐼CH∗∕𝐼OH∗ , as an indicator 
of the burner’s operating equivalence ratio;

• transfer function between pressure fluctuations 𝑝′rms and flame 
chemiluminescence 𝐼 ′OH∗ , calculated using the cross power spec-
tral density (CPSD) and power spectral density (PSD) based on the 
Welch periodogram method [50], and evaluated at the fundamen-
tal wave frequency 𝑓0: 𝑠𝑡,6 =∥ CPSD(𝑝′, 𝐼OH∗ , 𝑓0)∕PSD(p′, 𝑓0) ∥, 
the magnitude of the transfer function, and 𝑠𝑡,7 = ang

[

CPSD(𝑝′,
𝐼OH∗ , 𝑓0)

]

, the phase of the transfer function.

Trec = 100ms is chosen such that 𝑠𝑡 can be estimated with sufficiently 
low statistical uncertainties. We note that the RL agent is isolated from 
the mass flow controllers and has no direct knowledge about the flow 
rates of individual reactants. The RL agent only operates based on 
acoustic pressure and chemiluminescence signals.

After evaluating 𝑠𝑡, the agent imposes its action 𝑎𝑡 ∈  on the 
environment. 𝑎𝑡 contains two elements: the gain 𝑔 and the time delay 𝜏
of the real-time gain-delay control loop. As illustrated in Fig.  5, the real-
time gain-delay control loop is part of the environment and is operating 
at all times. The action 𝑎𝑡 = (𝑔𝑡, 𝜏𝑡) ∈ R2 of the RL agent therefore 
performs an update to the parameters running on the FPGA chip, on 
which the phase-shift controller is implemented. We constrain 𝑔 within 
the range [0, 3] (a.u.) and the time delay 𝜏 to [0, 2.8] ms, with the upper 
bound corresponding to slightly more than the longest acoustic period 
observed in this system. These bounds ensure that the agent’s action 
remains within expected limits during the control process. After the 
agent deploys an action, we wait Twait = 200ms before measuring a 
new state. Twait is chosen to be longer than the transient growth/decay 
of the pressure oscillation occurring when the controller is turned on 
or off. By using this delay Twait and by acquiring statistics over a 
duration much greater than both the acoustic period and the burner 
flow-through time, Trec = 100ms ≫ 𝑓−1

0 , we are able to achieve both 
statistical convergence when computing the state 𝑠𝑡, and a memory-less 
behavior for the environment, thereby ensuring that the environment 
behaves as a Markov process.

The reward function 𝑟 is designed to simultaneously minimize the 
pressure fluctuations in the combustor and the amplitude of the signal 
sent to the loudspeaker, inspired by similar approaches found in the 
literature [36]:
7 
𝑟𝑡 = 𝐶𝑟
(

𝑝′rms,𝑡
)

−𝐶𝑝 𝑝′rms,𝑡−𝐶𝑎

(

(

2
𝑔𝑡 − 𝑔min

𝑔max − 𝑔min
− 1

)2

+
(

2
𝜏𝑡 − 𝜏min

𝜏max − 𝜏min
− 1

)2
)

,

(6)

where 𝐶𝑝 and 𝐶𝑎 are constants chosen, through hyperparameter tun-
ing, to be 0.009 Pa−1 and 0.05, respectively. The gain and time delay 
are scaled to range between [−1, 1] using the action space bounds, 
𝑔min, 𝑔max, 𝜏min and 𝜏max, before computing the reward. The coefficient 
𝐶𝑟 is chosen to take the following form: 

𝐶𝑟(𝑝′rms) =

⎧

⎪

⎨

⎪

⎩

15 if 𝑝′rms < 150 Pa,
10 if 150 Pa ≤ 𝑝′rms < 550 Pa,
−5 if 𝑝′rms ≥ 550 Pa.

(7)

The piecewise design for 𝐶𝑟 allows the reward function to dynamically 
adjust based on 𝑝′rms. This structure ensures that the reward provides 
significant and non-linear incentives or penalties depending on how 
far the agent deviates from complete suppression of the combustion 
instability.

4.3. SAC agent

SAC is a RL model introduced to address two major challenges in 
model-free RL: very high sampling complexity and weak convergence 
properties [51,52]. It is a hybrid approach that combines aspects of 
both policy gradient and value-based methods to find the optimal 
policy 𝜋∗. In SAC, neural networks (NN) are utilized to approximate 
the three key functions defined in Eq. (3)–(5), which are essential for 
learning and decision-making. The agent architecture, shown in Fig. 
7, consists of five neural networks: a policy (i.e. actor) network 𝜋𝜓 , 
which selects the action 𝑎𝑡 as a function of the current state 𝑠𝑡, two 
𝑄-critic networks 𝑄𝛷1

 and 𝑄𝛷2
, which approximate the state–action 

value function, Eq. (5), a value network 𝑉𝜃 , and a target value network 
𝑉𝜃 , which both approximate the state value function, Eq. (4). Each NN 
consists of three layers and 256 hidden units per layer. The weights of 
these neural networks are denoted in their respective subscripts. For 
example, 𝜓 represents the weights of the policy network 𝜋𝜓  and 𝛷1
is the weights of the first 𝑄-critic network 𝑄𝛷1

. The training process 
is divided into three main stages, discussed in detail in the following 
paragraphs and in Algorithm 1:

1. Collect transitions: at each step, the agent interacts with the 
environment to deploy an action 𝑎𝑡, observe the resulting state 
𝑠𝑡+1, and generate a transition tuple (𝑠𝑡, 𝑎𝑡, 𝑟𝑡(𝑠𝑡, 𝑎𝑡), 𝑠𝑡+1). This 
transition is then stored in the replay buffer , a data structure 
with capacity of 106 transitions, which retains past experiences 
for future learning.

2. Compute objective functions: we randomly sample a subset 
of the replay buffer containing 256 transition tuples to compute 
objective functions 𝐽𝜋 , 𝐽𝑄, and 𝐽𝑉  (Lines 14–17 in Algorithm 1).

3. Update neural networks: using the objective functions 𝐽𝜋 , 𝐽𝑄𝑗 , 
and 𝐽𝑉 , we apply gradient descent to update the weights of the 
NNs.

These steps are iteratively repeated until convergence.
The policy network, colored in blue in Fig.  7, maps the state space 

𝑆 to probability distributions over the action space , which enables 
the agent to explore the action space efficiently. While collecting transi-
tions (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1), the action 𝑎𝑡 is sampled from a normal distribution 
whose parameters, 𝜇 and 𝜎, are computed using the policy network 
𝜋𝜓 . Unlike other RL approaches that maximize the cumulative reward 
in their policy objective function, SAC additionally maximizes the 
entropy of each policy output to explore more diverse actions [51]. 
This approach has been especially successful in learning more stochas-
tic policies for complex environments [52]. By accounting for the 
log-probability distribution of the action conditioned by the state, 
− log𝜋 (⋅ ∣ 𝑠), also known as entropy, in the calculation of the pol-
𝜓
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Fig. 7. SAC architecture. Each NN output is color-coded to represent its contribution to the agent’s objective functions, where the color mapping facilitates 
understanding the interaction between different NNs. More details on the implementation are provided in Algorithm 1. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.)
icy objective function 𝐽𝜋 (𝜓) (Line 14 in Algorithm 1), this approach 
balances the agent exploration and exploitation more effectively [51].

The 𝑄-critic networks 𝑄𝛷𝑗 , colored in orange in Fig.  7, estimate the 
state–action value function 𝑄, which quantifies the cumulative reward 
associated with taking an action 𝑎𝑡 given a state 𝑠𝑡 (Eq. (5)). We use 
two 𝑄-critic networks, 𝑄𝛷1

 and 𝑄𝛷2
, to reduce the overestimation bias 

when estimating the 𝑄-value, which could otherwise lead to suboptimal 
policies or unstable learning [53]. Each 𝑄-critic network is trained 
independently to generate separate outputs. The objective functions 
𝐽𝑄(𝛷𝑗 ), Lines 15 and 16 in Algorithm 1, are computed to minimize 
the difference between the predicted 𝑄 and 𝑄̂, the cumulative future 
reward. 𝑄̂ is estimated using the target value network 𝑉𝜃 [51,52], with 
a discount factor 𝜉 = 0.99.

The value network 𝑉𝜃 estimates the state value function, i.e., the 
expected long-term reward starting from state 𝑠𝑡 and following the 
current policy 𝜋𝜓  ((4)). The objective function of the value network 
𝐽𝑉 (𝜃), Line 17 in Algorithm 1, aims at minimizing the discrepancy 
between the value network and the expected value function. Starting 
from states 𝑠 ∈ , actions 𝑎̃ are resampled using the current policy 𝜋𝜓 , 
see Line 13 in Algorithm 1. By combining these resampled actions and 
8 
the 𝑄-critic networks, we build an estimator 𝑉  for the expected value. 
At this step, we estimate the 𝑄 value as the minimum estimates from 
the two 𝑄-critic networks [51,53].

The target value network 𝑉𝜃 provides a more stable version of the 
value function. This approach helps stabilize updates in the 𝑄-critic 
networks and prevents Q-value overestimation, which could destabilize 
the learning process.

The weights of these neural networks are updated using mini batch-
gradient descent based on objective functions 𝐽𝜋 (𝜓), 𝐽𝑄(𝛷1), 𝐽𝑄(𝛷2), 
and 𝐽𝑉 (𝜃), with one exception: the weights 𝜃 of the target value 
network are updated by applying an exponential moving average of 
the value network weights 𝜃 with a smoothing factor 𝛽 = 0.005. This 
approach allows for more stable gradient estimates than single-sample 
updates, which reduces the variance in the parameter updates. Lastly, 
our implementation uses Adam optimizer [54] with learning rate 𝜆 set 
to 10−4 for all NNs.

Unlike epoch terminology in ML training, RL models are trained 
based on the number of episodes, which represents a complete sequence 
of interactions between an agent and the environment. It begins from 
an initial state where 𝑔 = 0 and 𝜏 = 0 and proceeds through a series of 
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Fig. 8. (a) SAC’s cumulative reward during training at 𝜙 = 0.9 and 𝑋H2
= 70%. The ‘‘Mean’’ and ‘‘Std’’ in this plot correspond to the mean and standard deviation 

across the five agents trained at this operating condition. (b–d) State and actions during the training process. Each dot corresponds to one environment step. (b) 
Acoustic pressure fluctuations 𝑝′rms; (c) gain 𝑔; and (d) delay 𝜏 of the control loop. (b–d) The pressure fluctuation and action taken at each environment step are 
reported based on the episode to which the environment step belongs.
Algorithm 1 Soft Actor-Critic
1: Initialize NNs: 𝜋𝜓 , 𝑄𝛷,1, 𝑄𝛷,2, 𝑉𝜃 , 𝑉𝜃
2: Initialize replay buffer  and environment FLAME
3: for each episode do
4:  𝑠𝑡 ← FLAME(𝑎𝑡 = (0, 0))
5:  for each environment step 𝑡 = 1, 𝑁𝑠 do
6:  Collect transitions:
7:  𝑎𝑡 ∼ 𝜋𝜓 (⋅ ∣ 𝑠𝑡)
8:  𝑠𝑡+1 ← FLAME(𝑎𝑡)
9:   ←  ∪

{

(𝑠𝑡, 𝑎𝑡, 𝑟(𝑠𝑡, 𝑎𝑡), 𝑠𝑡+1)
}

10:  Compute objective functions:
11:   = sample 𝑁 transitions from 
12:  sample actions 𝑎̃ ∼ 𝜋𝜓 (⋅ ∣ 𝑠) for 𝑠 ∈ 
13:  compute log-probability log𝜋𝜓 (𝑎̃ ∣ 𝑠) for 𝑠 ∈ 
14:  𝐽𝜋 (𝜓) =

1
||

∑

𝑠∈ log𝜋𝜓 (𝑎̃ ∣ 𝑠) − min𝑗=1,2𝑄𝛷𝑗 (𝑠, 𝑎̃)

15:  𝐽𝑄(𝛷𝑗 ) =
1
||

∑

(𝑠,𝑎,𝑟,𝑠′)∈

(

𝑄𝛷𝑗 (𝑠, 𝑎) − 𝑄̂(𝑠, 𝑎)
)2
, for 𝑗 ∈ {1, 2}

16:   with 𝑄̂(𝑠, 𝑎) = 𝑟(𝑠, 𝑎) + 𝜉𝑉𝜃(𝑠
′)

17:  𝐽𝑉 (𝜃) =
1
||

∑

𝑠∈
1
2

(

𝑉𝜃(𝑠) − 𝑉 (𝑠)
)2

18:   with 𝑉 (𝑠) = min𝑗=1,2𝑄𝛷𝑗 (𝑠, 𝑎̃) − log𝜋𝜓 (𝑎̃ ∣ 𝑠)
19:  Update neural networks:
20:  𝜓 ← 𝜓 − 𝜆𝜋∇𝜓𝐽𝜋 (𝜓)
21:  𝛷𝑗 ← 𝛷𝑗 − 𝜆𝑄∇𝛷𝑗 𝐽𝑄(𝛷𝑗 ) for 𝑗 ∈ {1, 2}
22:  𝜃 ← 𝜃 − 𝜆𝑉 ∇𝜃𝐽𝑉 (𝜃)
23:  𝜃 ← 𝛽𝜃 + (1 − 𝛽)𝜃
24:  end for
25: end for

actions and observations. Every interaction between the agent and the 
burner is referred to as an environment step. A complete episode spans 
𝑁𝑠 = 60 environment steps or transitions, with early-episode termina-
tion occurring after 35 steps if the agent fails to suppress the instability. 
Each environment step takes approximately 400ms, contributing to the 
overall episode duration.

5. Results

In this section, we discuss our adaptive active control policy, which 
can effectively mitigate combustion instabilities across a wide range 
of fuel compositions and equivalence ratios. Section 5.1 discusses the 
9 
training process of the RL model on a single operating condition. We 
then train the model across an extended operating range in Section 5.2. 
Finally, we discuss in Section 5.3 the optimal control parameters 𝑔 and 
𝜏 identified by the RL model.

5.1. Learning an optimal control policy for a single operating condition

This section presents results from training SAC to dampen com-
bustion instabilities at a single operating condition of 𝜙 = 0.9 and 
𝑋H2

= 70%. To assess the robustness of our results, we repeat the 
training five times, thereby creating five agents, each initialized with 
a different random seed, i.e., different NN weights initialization. To 
evaluate the learning progress of the agent, we track the cumulative 
reward, defined as the sum of all rewards in one episode, Fig.  8(a). We 
also monitor, for each episode, the amplitude of the acoustic pressure 
fluctuations, 𝑝′rms, Fig.  8(b), and the actions taken by the agent, Fig. 
8(c,d). In the early stages of training, the agent has no knowledge of 
the behavior of the flame, the combustor, and the control system. It 
samples from a large range of both 𝑔 and 𝜏 to explore the state–action 
space, thereby achieving highly variable levels of acoustic pressure 
fluctuations and a low cumulative reward. As training progresses, the 
cumulative reward increases noticeably, indicating that the agent is 
effectively learning and improving the policy. After approximately 10 
episodes, we note that the range of gain parameter 𝑔 explored by the 
agent reduces as it begins to focus on 𝑔 ≲ 1.5. After 34 episodes, we 
observe a pivotal shift: the agent begins to take relatively good actions 
that are able to consistently dampen the thermoacoustic instability 
and yield a higher reward. This transition aligns with the appreciable 
drop in the variance of the action space (𝑔, 𝜏) suggesting that the 
agent is narrowing its exploration range. In the later stages of training, 
episodes ≥ 40, the cumulative reward reaches a plateau as the agent 
converges to a bounded range of actions, indicating that the agent has 
learned to generate precise control parameters to effectively suppress 
the combustion instability. We refer to this model as RL-SAC I for later 
discussion.

Fig.  9 illustrates the damping of thermoacoustic oscillations by the 
RL-SAC I controller on two operating conditions. Initially, the controller 
is inactive and we activate it at 𝑡 = 0ms. The combustion system is 
initially at a limit cycle oscillation, with pressure fluctuation amplitudes 
on the order of 2 kPa. As the RL-SAC I controller is activated (𝑡 =
0ms, red dashed line), the acoustic pressure initially shows a brief 
excursion after which the oscillation is dampened in (100ms). After 
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Fig. 9. Acoustic pressure traces recorded near the backplane of the combustor at (a) 𝜙 = 0.9 and 𝑋H2
= 70% (training condition) and (b) 𝜙 = 0.65 and 𝑋H2

= 70%. 
The RL-SAC I controller is initially turned off and is activated at 𝑡 = 0 (red dashed line). The inset is a zoom into the first 100ms after the controller has been 
turned on. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 10. (a) Cumulative reward of the RL-SAC IV agent during training. (b, c, d) State and actions observed during the training process. Each dot corresponds 
to one environment step. (b) Acoustic pressure fluctuations 𝑝′rms; (c) gain 𝑔; and (d) delay 𝜏 of the control loop. (b–d) The pressure fluctuation and action taken 
at each environment step are reported based on the episode to which the environment step belongs.
this initial transient, 𝑡 ≥ 100ms, the pressure trace shows that the RL-
SAC I controller is able to fully suppress the instabilities at 𝜙 = 0.9, 
Fig.  9(a). The small fluctuations in the pressure traces are primarily 
caused by combustion noise [55]. The Rayleigh integral, discussed in 
the following section, demonstrates that the pressure fluctuations and 
heat release are uncorrelated. In contrast, at 𝜙 = 0.65, Fig.  9(b), we 
observe a noisy, bursting behavior, albeit at a significantly reduced 
amplitude, which the RL-SAC I active controller is not able to fully 
dampen.

5.2. Learning an optimal adaptive control policy

In this section, we extend the training process of our RL agent on 
four operating conditions, in an effort to develop an adaptive control 
system that can operate over a wide range of 𝜙 and 𝑋H2

 with minimal 
training. During training, we keep 𝑋H2

= 70% constant to test the 
RL’s capability in extending to other fuel compositions outside of the 
training range. We consider four distinct equivalence ratios. We use the 
following notations:

• Agent RL-SAC I is the one discussed in Section 5.1. It is trained 
until convergence on a single condition 𝜙 = 0.9.

• Agent RL-SAC II is initially trained at 𝜙 = 0.9, and then at 𝜙 =
0.65.

• Agent RL-SAC III’s training spans three conditions 𝜙 = 0.9, 0.65, 
and 0.7.

• Agent RL-SAC IV’s training expands to a fourth conditions 𝜙 =
0.9, 0.65, 0.7, and 0.8.
10 
Fig.  10(a) shows the cumulative reward at each episode while extend-
ing the SAC training across these four conditions. During the first 60 
episodes, the agent is trained on a single operating condition, 𝜙 = 0.9
and 𝑋H2

= 70%, see discussion in Section 5.1. At the 60th episode, the 
equivalence ratio is changed to 𝜙 = 0.65 and the cumulative reward 
suddenly drops, indicating that the RL agent has identified that the 
control policy it learned previously at 𝜙 = 0.9 is no longer suitable 
at this new operating condition. This is consistent with the increased 
variance in the gain and the delay (see Fig.  10(c–d)) along with 
higher pressure fluctuations in Fig.  10(b). Therefore, the policy needs 
additional tuning to generalize to a new behavior of the flame. Around 
the 85th episode, as the cumulative reward reaches a new plateau and 
the action taken by the controller converges toward the optimum value, 
we again change the operating conditions of the burner to 𝜙 = 0.7. 
We observe that the agent is capable of adapting to a new operating 
condition within approximately 15 episodes. In contrast to the change 
of operating condition 𝜙 = 0.9 → 0.65, during the transition 𝜙 = 0.65 →
0.7, the cumulative reward increases slightly. This behavior is even 
more striking during the transition 𝜙 = 0.7 → 0.8. This indicates that the 
agent is exploiting more than exploring after these changes of operating 
conditions. The policy developed at the 90th episode (𝜙 = 0.65 →
0.7) already shows a good degree of generalizability and only requires 
minor additional tuning unlike the policy at the 60th episode. The small 
adjustments in operating conditions, 𝜙 = 0.65 → 0.7, and 𝜙 = 0.7 →
0.8, refine the policy incrementally. Consequently, the agent changes 
its focus from learning and exploration to refining and exploiting the 
learned control strategies. This is clearly marked by the absence of any 
sudden drops in the cumulative reward, combined with low variance 
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Fig. 11. Testing of the active control schemes at different operating conditions and learning stages. (a–e) Amplitude of the harmonic acoustic pressure fluctuation 
near the combustor backplane. (f–j) Rayleigh integral (Eq. (2)). (k–n) Median value of the controller gain 𝑔; (o–r) delay 𝜏. (k–r) Gray corresponds to 𝑔 = 1.0
and 𝜏 = 0.46ms, the control parameters used in the ‘‘fixed controller’’. (Column 1) No active control. (Column 2) Fixed control parameters tuned for optimal 
suppression at 𝜙 = 0.9 and 𝑋H2

= 70%. (Columns 3–5) SAC based controllers trained on an increasing numbers of operating conditions. The operating conditions 
used for training of the SAC controllers are shown with stars.
in the actions taken by the agent. The consistent performance of the 
agent across five different random seeds and four operating conditions 
highlights the stability and reliability of the learned policy.

The strength of our RL approach, however, mostly resides in its 
adaptability. In Fig.  11, we test our RL agents across a wide range of 𝜙
and 𝑋H2

 conditions, corresponding to all conditions at which thermoa-
coustic instabilities are observed in the absence of active control (see 
Fig.  3). During the measurements leading to Fig.  11, the SAC controllers 
are operated in testing mode, i.e., all the trainable parameters in the 
NNs are kept constant. While the fixed parameter controller is able 
to dampen the thermoacoustic oscillations at certain conditions (dark 
regions in Fig.  11(b)), its performance is sub-optimal and uneven across 
the operating range of the burner. At lean conditions, the acoustic 
pressure amplitude remains high and a strong combustion instability 
is present, as illustrated by the elevated Rayleigh integral in this 
region, Fig.  11(g). This lack of generalizability of fixed-parameter gain-
delay controllers is consistent with the literature [21]. In contrast, the 
simplest RL-based controller, RL-SAC I, is able to substantially reduce 
11 
the amplitude of thermoacoustic fluctuations across almost the entire 
operating range, Fig.  11(c). In regions of the operating map closer to the 
training condition, RL-SAC I achieves a comparable suppression in the 
acoustic amplitude in the range of 120−130 dBSPL similar to the training 
condition. Even in regions in which acoustic pressure fluctuations 
remain elevated, the oscillation amplitude and thermoacoustic source 
term 𝑅𝐼 are both significantly reduced compared to the ‘‘no control’’ 
and ‘‘fixed controller’’ cases. This happens as RL-SAC I continuously 
refines its policy to maximize the reward by reducing the acoustic 
amplitude. It effectively explores diverse actions that contribute to 
the goal of suppressing the combustion instabilities even when trained 
on a single operating condition compared to the fixed action in the 
‘‘fixed controller’’ case. For example, in certain regimes of operating 
conditions where the effective control demands that the gain exceeds 
unity, the fixed controller fails to achieve suppression due to its fixed 
setting. In contrast, RL-SAC I adapts to these conditions, selecting the 
necessary actions dynamically to maintain effective control, discussed 
in Section 5.3. In addition, the ability of RL-SAC I to perform better 
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than a fixed-parameter controller likely indicates that RL-SAC I is able 
to leverage the expanded state space 𝑠𝑡 to infer a reasonable black-
box model for the behavior of the burner and its response to a policy, 
thereby extrapolating better control parameters even at conditions 
differing significantly from its training.

As we fine-tune the SAC controller by training at additional op-
erating conditions, the overall performance of the model improves 
rapidly, as shown in Fig.  11 (columns 4–5). RL-SAC IV, shown in the 
rightmost column of Fig.  11 and trained 2.5 times longer than RL-
SAC I, on a total of four conditions, is the most robust controller, 
consistently suppressing combustion instabilities across the majority of 
the operating range, as shown by the Rayleigh integral in Fig.  11(j).

Catastrophic forgetting [56] is generally a major concern when 
an agent is trained on multiple conditions. It occurs when learning 
a new condition interferes or replaces the knowledge learned from 
previous conditions, resulting in forgetting the policies that worked 
well under previous conditions. However, our agent has maintained 
a balance between integrating new information and retaining useful 
strategies from previous conditions due to the replay buffer [57]. This 
is consistent with the enhanced performance from RL-SAC I to RL-SAC 
IV as shown in Fig.  11. This suggests that the policy has been fine-
tuned, such that it mitigates the risk of catastrophic forgetting, thereby 
preserving the robustness and efficiency of the learned control scheme.

In Fig.  11(e), we nevertheless observe that the acoustic pressure 
amplitude remains slightly more elevated at certain conditions, espe-
cially at lower 𝑋H2

 near the boundary of the tested domain. These 
regions of lower efficacy of the RL-SAC IV controller are found near the 
location where we observe a bifurcation between stable and unstable 
operation in the absence of active control, Fig.  11(a). Although the 
acoustic pressure fluctuations are reduced by approximately 20 dBSPL
when using active control, this lower performance is unexpected and 
should be investigated in future work.

In the supplementary information, Fig. S1, we present a more quan-
titative assessment of the reduction in oscillation amplitude achieved 
by each controller over the entire test set. For RL-SAC IV, 50% of 
the test conditions exhibit reductions of at least 26 dB in the pressure 
fluctuations, with some exceeding 40 dB. This represents a notable im-
provement compared to RL-SAC I, which achieves at least 26 and 14 dB 
reduction on only 25% and 50% of the test conditions, respectively. 
These results show the convergence of the controller with additional 
training and demonstrate the suitability of our approach in mitigating 
combustion instabilities across a large range of operating conditions 
and flame types.

5.3. Optimum actions chosen by RL controller

Fig.  11(k–r) shows the parameters 𝑔 and 𝜏 determined by all four 
controllers as a function of operating conditions. For the reader’s conve-
nience, the color map in Fig.  11 is centered around the values identified 
in Section 4.1 for the condition 𝜙 = 0.9 and 𝑋H2

= 70% and used for the 
‘‘fixed controller’’. The range of action used by the RL-SAC IV controller 
is quite large: depending on operating condition, the gain parameter 
spans values ranging from 0.75 to 1.6, Fig.  11(n), while the delay 
parameter ranges from under 0.4ms to 0.8ms, Fig.  11(r), illustrating the 
benefit of an adaptive controller to address thermoacoustic instabilities 
in highly fuel-flexible combustion applications. Fig.  11(n, r) reveals 
distinct regimes identified by the RL-SAC IV controller: at 𝜙 ≥ 0.9 the 
optimal gain value to suppress the instability is on the order of 𝑔 ≲ 1. 
In contrast, at very lean conditions 𝜙 ≲ 0.6, a much higher gain is 
required. A similar pattern can be observed for the delay parameter 𝜏: 
the controller uses longer 𝜏 at very lean conditions, which is expected 
as the flame and its associated convective timescale increases at leaner 
operating conditions. The dependency of the delay parameter on 𝑋H2

 is 
less pronounced, with a general trend of slightly lower 𝜏 being used at 
high 𝑋H2

. This behavior might be due to the training being conducted 
at constant hydrogen enrichment 𝑋 = 70%. RL-SAC II’s optimal 
H2
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actions differ only slightly from RL-SAC IV’s, indicating that additional 
training only leads to minor modifications to the control policy to 
further optimize and improve the generalizability of the control policy. 
Notably, for 𝜙 ≤ 0.55, an increase in the gain values is observed. 
This increase correlates with a significant reduction in the acoustic 
amplitude during testing in this region of the operating map, leading 
to further improvements in the agent’s performance. It is remarkable to 
observe that RL-SAC I and RL-SAC IV follow very similar trends in the 
actions they take as 𝜙 and 𝑋H2

 are varied, Fig.  11(i, p). Despite being 
trained on a single operating condition, RL-SAC I has correctly identi-
fied that 𝑔 should be decreased (resp. increased) at richer (resp. leaner) 
equivalence ratios, and that 𝜏 should be shorter (resp. longer) at richer 
(resp. leaner) equivalence ratios, further illustrating the capability of 
our SAC controller to reasonably extrapolate a suitable control policy 
from minimal training.

6. Conclusions

In this work, we experimentally demonstrate that a deep RL based 
active control system can suppress combustion instabilities over a wide 
range of operating conditions in a premixed turbulent CH4/H2/air 
bluff-body-stabilized flame. The deep RL controller uses a SAC archi-
tecture. The state space used as input by the controller leverages both 
acoustic and chemiluminescence sensors. By combining these hetero-
geneous sensors and using domain-specific knowledge to preprocess 
their signals, at its training condition, the SAC controller is able to 
match and outperform the performance of a fixed parameter controller. 
More importantly, our extensive testing shows that it is able to tune 
itself to adapt to unseen operating conditions. A controller trained on 
a single operating condition is able to significantly dampen thermoa-
coustic oscillations over the extensive operating range of the burner. 
With additional training on four distinct operating conditions, the SAC 
controller’s performance is further improved, and it is able to achieve 
at least 26 dB reduction in acoustic pressure fluctuations on more than 
50% of the investigated operating conditions.

This SAC controller represents a promising technique to reduce the 
amplitude of acoustic pressure fluctuations in fuel flexible systems. 
Future research should focus on fully suppressing weak thermoacoustic 
bursts, which occur in certain regions of the operating map despite 
active control. These bursts, which are highly stochastic in nature, have 
proven a challenge for the current controller. This could be addressed 
by considering a control system with additional degrees of freedom in 
their real-time control system.
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Appendix A. Flame shape and flame dynamics

To examine the flame shape, a high speed camera (Phantom
TE2010, Vision Research, Wayne, NJ, USA), equipped with an optical 
filter (centered at 425 nm with a FWHM of 50 nm, Edmund Optics, 
Barrington, NJ, USA), is used to capture line-of-sight-integrated CH∗

chemiluminescence images at a repetition rate of 6 kHz. The exposure 
time is 166.4 μs. In addition, a Tucsen Dhyana 400BSI V3 sCMOS 
camera, equipped with a 58mm lens (Voigtlander, Germany), with an 
aperture set at 𝑓∕8, is used to record the flame images under stable 
conditions. A bandpass filter centered at 430 nm (10 nm FWHM, Edmund 
Optics) is used to record CH*. The exposure time is 5 s.

In Fig.  A.1, we show CH* chemiluminescence images of the flame 
at different levels of hydrogen in the fuel stream. An inverse Abel trans-
form is used to deconvolve the shape of the flame under an assumption 
of axisymmetry. For Fig.  A.1, we use the active control system with 
fixed parameters to suppress all thermoacoustic oscillations. We show 
the state of the flame at rest, in the absence of combustion instabilities. 
At 𝑋H2

= 0, the pure methane flame has a characteristic ‘‘tulip’’ shape. 
As 𝑋H2

 is increased, the flame shortens and transitions to a ‘‘V’’ shape. 
A very weak chemiluminescence signal is visible in the outer shear 
layer of the jet, which is far weaker than the flame anchored along 
the inner shear layer between the main jet and the inner recirculation 
zone located above the bluff-body. Between 40% ≤ 𝑋H2

≤ 50%, in the 
region in which the bifurcation to thermoacoustic instability occurs, 
we do not observe any sudden change in the topology of the flame. 
We only observe a gradual shortening of the flame, accompanied by a 
minor increase in the strength of the chemiluminescence from the outer 
shear layer. Between 50% ≤ 𝑋 ≤ 80%, the flame gradually transitions 
H2
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to an ‘‘M’’ shape. For all operating conditions investigated, the flame is 
located away from the wall, in contrast to previous work [47].

Regarding flame dynamics during combustion instabilities, we show 
high speed chemiluminescence imaging of the flame during limit cycle 
oscillations at two conditions, 𝑋H2

∈ {50%; 80%}, in Fig.  A.2. At 
each condition, oscillations are recorded for 1.16 s at 6 kHz. Images 
are processed using dynamic mode decomposition [58] to reconstruct 
phase-averaged images at the main frequency of oscillation, to which an 
inverse Abel transform is subsequently applied. The reader is referred 
to Ref. [59] for the detailed procedure.

At both conditions, we observe that the flame’s shape response 
to acoustic pressure follows a well-known behavior for M- and V-
shaped flames identified by Schuller et al. [60]. In these types of 
flames, the flame behavior is dictated by vortex shedding from the 
injection system. At 𝑋H2

= 50%, most of the unsteady heat release rate 
fluctuations occur near the tip of the flame, while the flame angle does 
not show significant fluctuations. At 𝑋H2

= 80%, the ‘‘M’’-shaped flame 
shows a cyclic lengthening and shortening. Similar behaviors have been 
observed in the literature, for laminar, turbulent, and swirled premixed 
flames [61–64].

Observations of the flame shape are helpful to interpret the ther-
moacoustic behavior in Fig.  4. Let us first consider the transition 
occurring between 40% ≤ 𝑋H2

≤ 43%. In this interval, the flame 
is ‘‘V’’-shaped. The only significant change is a gradual shortening 
caused by the increased flame speed of the CH4/H2/air mixture [38]. 
Well-established scalings indicate that the characteristic time delay 
associated with the flame transfer functions of such premixed ‘‘V’’ 
flames gradually decreases [38,60,65], leading the flame’s transfer 
function into a region of higher gain and shorter phase with regards 
Fig. A.1. CH* chemiluminescence images of the flames at 𝑢𝑏 = 22.5m s−1 and 𝜙 = 0.8. From left to right, the volume fraction of hydrogen in the fuel, 𝑋H2
, is 

gradually increased. These images are time-averaged and an inverse Abel transform is used to simplify interpretation. For 𝑋H2
≥ 41%, the active control system 

is used to suppress thermoacoustic oscillations. Note that, in all of these images, the walls of the confinement tube are located outside of the field of view, far 
from the flame itself. The vertical line near the centerline is caused by spurious reflections in the quartz tube used for the combustion chamber.
Fig. A.2. Phase-averaged chemiluminescence images of the flame at 𝑢𝑏 = 22.5m s−1, 𝜙 = 0.8, 𝑋H2
= 50% (top), and 𝑋H2

= 80% (bottom). These images are obtained 
during a limit cycle oscillation. Phase-averaging is performed using a dynamic mode decomposition procedure [58], followed by an inverse Abel transform 
(see [59] for a detailed description of the methodology). Note that the phase reference is arbitrary.
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to perturbations, which can be more favorable for thermoacoustic 
oscillations [66]. For higher H2 content, 50% ≤ 𝑋H2

≤ 80%, in a region 
where thermoacoustic instabilities exhibit a limit-cycle behavior, whose 
amplitude slightly decreases with 𝑋H2

, the flame adopts a distinct 
‘‘M’’ shape. The reduced gain of the flame-describing function of ‘‘M’’ 
flames [64] could explain the decrease in the amplitude of the limit 
cycle observed at high 𝑋H2

 in Fig.  3.

Appendix B. Supplementary data

The supplementary information presents additional quantitative 
data to assess the performance improvements achieved with the RL con-
trollers. The unprocessed experimental data used for characterizing the 
thermoacoustic instabilities in Section 3 is publicly available through 
the Stanford Digital Repository [67].

Supplementary material related to this article can be found online 
at https://doi.org/10.1016/j.combustflame.2025.114406.
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