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ARTICLE INFO ABSTRACT
Keywords: Thermoacoustic instabilities are a challenge in the design and operation of combustion systems. Addressing
Deep feiﬂforcément learning this challenge is becoming even more critical with the development of fuel-flexible combustors capable of
Machine learning operating with hydrogen and other sustainable fuel sources. While active control is a well-known method for

Combustion instability
Hydrogen combustion
Fuel-flexible combustion
Multi-sensor control

damping combustion instabilities, identifying appropriate control parameters becomes increasingly complex
in the presence of changing fuel composition and operating conditions. In this work, we present a model-
free deep reinforcement learning (RL) technique to adaptively tune an active control system. We demonstrate
that the RL-based active control system is able to adaptively suppress thermoacoustic instabilities over an
extended range of operating conditions with minimal training. The demonstration is performed on a laboratory-
scale bluff-body-stabilized premixed methane/hydrogen/air flame, at equivalence ratios ranging from 0.5 to
stoichiometric, and with up to 80%,,, hydrogen in the fuel. After training the RL system on a single operating
condition, combustion instabilities can be mitigated over the entire operating range of the burner. Extending
the training to three additional operating conditions allows the RL control system to fine-tune its policy and
further reduce thermoacoustic instabilities, achieving a sixfold reduction in the acoustic source term over
most of the operating range. We observe a reduction of up to 40 dB in acoustic pressure over 50% of the
operating range. The proposed approach offers a promising path towards more efficient, adaptive control
systems for thermoacoustic instabilities, demonstrating the potential of RL to address the operational challenges
of fuel-flexible combustion systems.

Novelty and Significance Statement

We show the first experimental demonstration of a reinforcement learning-based control method for ther-
moacoustic instabilities. The experiments are performed on a laboratory-scale premixed methane/hydrogen/air
bluff-body burner, which exhibits strong combustion instabilities over a wide range of operating conditions.
Building upon a conventional control system, which utilizes a pressure sensor, an acoustic driver, and a gain-
and phase-shift controller, the reinforcement learning-based controller is able to dampen instabilities over the
entire operating range. This is achieved while training the controller on a single operating condition. Extending
training to a total of four distinct operating conditions further fine-tunes the control policy and yields an
additional reduction in the acoustic pressure amplitude. This research illustrates the potential of reinforcement
learning for robust control in combustion systems - capable of addressing the challenges of complex combustion
physics, adapting to unseen conditions, and merging information from heterogeneous sensors.

1. Introduction release rate, leading to undesirable effects, such as reduced efficiency,
higher emissions, and structural damage to the combustor [2]. In-

Thermoacoustic instabilities are a major challenge in the design creasingly stringent emission requirements have led to a shift towards
and operation of combustion systems, ranging from jet and rocket lean-premixed combustors, which are more susceptible to thermoacous-
engines to industrial furnaces and stationary gas turbines [1]. Thermoa- tic oscillations due to their sensitivity to acoustic perturbations [3] and
coustic instabilities typically occur due to the feedback loop between higher power densities compared to conventional combustors [4]. With

acoustic pressure fluctuations, injector response, and unsteady heat
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Abbreviations

a.u.

Agent action

Action space

Batch of transition tuples

Replay buffer

Diameter of combustor tube (mm)
Synthesized acoustic signal

Frequency (Hz)

Fundamental frequency of the thermoacous-
tic oscillation (Hz)

Gain of the controller
Chemiluminescence intensity

Objective function

Length of combustor tube (mm)

Mass flow rate (kgs™!)

Maximum number of environment steps
Transition dynamics

Acoustic pressure (Pa)

Atmospheric pressure (Pa)

Q-critic network

Volumetrically integrated heat release rate
(W)

Reward

Rayleigh integral (W)

State vector of the environment

State space

Injector cross-sectional area (m?)
Duration of data acquisition for state vector
estimation (s)

Wait time before sampling signals (s)
Injector bulk velocity (ms™!)

Value network

Hydrogen volume fraction (fuel)

Smoothing factor of the target value network
Heat capacity ratio

Learning rate of gradient descent
Trainable weights of Q-critic network
Equivalence ratio

Policy network

Trainable weights of policy network
Density of unburnt reactants (kg/m?)
Time delay of the controller (s)
Trainable weights of value network
trainable weights of target value network
Discount factor

Subscripts and Superscripts

Mean value

Magnitude

Evaluated with the current policy
Phase angle

Root mean square

Arbitrary unit

CDF Cumulative distribution function
CPSD Cross power spectral density
FLAME Flame environment

FPGA Field programmable gate arrays
HEX Heat exchanger

MEFC Mass flow controller

NN Neural network

PMT Photo multiplier tube

PSD Power spectral density

RL Deep reinforcement learning
SAC Soft actor-critic

the transition towards decarbonization in the energy and transporta-
tion sectors, there is also a growing interest in using carbon-free and
sustainable fuels, such as hydrogen (H,), ammonia (NHj3), and other
synthetic fuels to power stationary gas turbines and jet engines. Hydro-
gen in particular exacerbates the challenges posed by thermoacoustic
instabilities due to its high flame speed, higher power density, and
the increased susceptibility of the flame to acoustic and convective
perturbations [5,6].

Over the past decades, various methods have been proposed to
suppress thermoacoustic instabilities, broadly categorized into passive
and active methods [2]. Passive methods rely on altering either the
acoustic properties of the combustor, or the flame response to acous-
tic perturbations. Acoustic methods passively mitigate thermoacoustic
instabilities using baffles and other devices to modify the shape of
acoustic eigenmodes [7], by controlling the acoustic coupling between
cavities [8,9], or by increasing acoustic damping using perforated liners
or resonators [10]. Tuning the flame response to dampen the thermoa-
coustic source term can be achieved by a variety of schemes: modifying
the topology of the flame by changing the injector geometry [11], fuel
composition [12], or fuel staging [13], which may affect combustion
performance and pollutant emissions; or by creating a destructive
interference in the flame and injector response to acoustic perturba-
tions [14,15]. These passive control methods have been successfully
integrated in practical systems [2,16], but limitations, such as weight,
increased pollutant emissions, and degradation of other critical perfor-
mance metrics can restrict their application. In addition, many of these
passive methods must be tuned to target specific eigenfrequencies of the
combustor, which reduces their range of applicability and adaptability
for changing operating conditions and fuel composition.

In active control schemes, sensors are used to monitor the state of
the flame in order to synthesize an input signal to actuators [17,18].
Active control systems fall into two broad categories depending on
their response time [18]. “Slow” control systems have response times
on the order of 100ms or slower and essentially act as adjustable
passive control schemes. In contrast, “fast” control systems respond
to input perturbations within timescales much shorter than the period
of the thermoacoustic oscillation. The present work focuses on “fast”
control of thermoacoustic. Of particular relevance to the present study
are early experimental demonstrations of active control of combustion
instabilities using microphones, acoustic drivers, and phase-shift con-
trollers [19,20]. In these control schemes, the signal e:, used to drive
the acoustic actuator is given by

dty=gp't-n), €h)

where p’ is the acoustic pressure measured by the microphone, g is the
controller’s gain parameter, and 7 is its delay parameter. This method
has been extended to multiple actuators [21], and demonstrated in
full-scale industrial applications [22].
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Thermoacoustic oscillations are known to be particularly sensitive
to even small changes in combustor geometry and operating condi-
tions [23]. Given the growing emphasis on fuel flexibility in propulsion
and power generation [5,6], the versatility of active control systems,
whose response can be optimized by tuning control parameters, is
an attractive prospect. This has sparked renewed interest towards the
development of adaptive control schemes for thermoacoustic applica-
tions. Early attempts by Demayo et al. [24] focused on developing a
robust control system that utilizes a stack of feedback sensor to monitor
both thermoacoustics and pollutant emissions. This approach proved
effective across different configurations, demonstrating the ability to
optimize the system performance within 10 to 15 min. Liu et al. [25]
used linear genetic programming to simultaneously suppress thermoa-
coustic instability and reduce emissions through modulation of the
fuel stream. Dharmaputra et al. [26] used Bayesian optimization to
optimize the parameters of a phase-shift controller in simulations and
experiments, demonstrating the convergence to the global optimum for
the controller’s parameters. Additionally, their framework allowed to
constrain the final acoustic pressure below a specified threshold and
enabled knowledge transfer across different operating conditions. How-
ever, Bayesian optimization schemes do not adapt to unseen conditions
and require re-running the optimization process, which can limit their
deployment for real-time applications [27].

Over the past decade, deep reinforcement learning (RL) has demon-
strated significant advances across various applications, including
robotics control [28], drug discovery [29], natural language process-
ing [30], flow control [31,32] and combustion [33-35]. RL integrates
deep neural networks to handle high-dimensional state and action
spaces, enabling the model to learn more complex representations from
multi-modal inputs. Compared to Bayesian methods, RL is scalable
and capable of handling larger state and action spaces. It has the
advantage of dynamically adapting to unseen conditions and uncertain
environments in contrast to conventional approaches. For example,
Alhazmi and Sarathy [36] showed, on a reduced-order computational
thermoacoustic model, that soft actor-critic (SAC), a model-free RL
approach, was able to adjust the parameters of a phase-shift controller,
and that SAC outperformed other control methods, such as extremum
seeking control, H-infinity, and self-tuning regulator. The numerical re-
sults from their work illustrate the potential of using RL for suppressing
combustion instabilities.

In the present work, we mitigate thermoacoustic instabilities in
a laboratory-scale turbulent premixed burner, operated over a wide
range of equivalence ratio and CH4/H, mixing ratios, using a SAC-
based adaptive control framework. Specifically, the objectives of this
research are (1) to demonstrate experimentally the use of RL in a real-
time combustion application; (2) to develop a highly adaptive control
framework that is capable of dampening combustion instabilities over a
large range of operating conditions; and (3) by developing this control
framework, to address the technical challenges posed by thermoacous-
tic instabilities in fuel-flexible combustors that operate across a wide
range of CH,/H, fuel mixtures.

The structure of this article is outlined as follows: Section 2 presents
a detailed description of the experimental configuration. Section 3
describes the thermoacoustic behavior of the burner in the absence of
active control, providing a baseline for further discussion. In Section 4,
we introduce the SAC model and present the active control framework.
The results from training and testing the RL-SAC model are discussed
in Section 5. Finally, Section 6 concludes the article with a summary
of the key contributions of this work.

2. Experimental methods
This section discusses the key components of the experimental

setup, which is used to evaluate the effectiveness of our adaptive
control policy.

Combustion and Flame 282 (2025) 114406
2.1. Burner setup

Experiments are conducted on a fully premixed turbulent bluff body
burner, which is schematically shown in Fig. 1. This burner closely
resembles experimental rigs investigated at Cambridge University [37]
and the Norwegian University of Science and Technology (NTNU) [38].

Methane (Linde, Danbury, CT, USA, > 99% purity), hydrogen (Linde,
Danbury, CT, USA, > 99.99% purity) and laboratory clean dry air are
premixed far upstream of the burner using an array of mass flow
controllers (MFCs, Alicat Scientific, Tucson, AZ, USA, combined ac-
curacy better than 0.8%). The reactants are not pre-heated and all
experiments are conducted at ambient pressure. The mixture enters a
settling plenum through four equally-spaced ports before passing into
the injector through 72 ports, each having a diameter of 1 mm. The
injector consists of a 19 mm-diameter cylindrical tube, with a 5mm-
diameter inner rod. A 45° conical bluff-body, made of 304L stainless
steel, is used to anchor the flame with a diameter of 12.7mm at the
combustion chamber backplane. The bluff body assembly is centered
using three grub screws located 51 mm upstream of the exit plane. The
combustion chamber consists of a transparent quartz tube with an inner
diameter D, = 70 mm and length L, = 305 mm.

2.2. Sensors

Combustion instabilities are commonly characterized by measuring
the pressure fluctuations p’ and volumetrically integrated heat release
rate (HRR) Q in the flame region. In the present work, acoustic pressure
fluctuations near the dump plane of the burner are measured using a
high-dynamic range /4" pressure field condenser microphone (model
378C10, PCB Piezotronics, Depew, NY, USA), connected to a model
482C15 signal conditioner (PCB Piezotronics, Depew, NY, USA). The
microphone is placed on a non-reflecting semi-infinite water-cooled
acoustic waveguide, which follows the design described by Rajen-
dram Soundararajan et al. [39]. This waveguide introduces an acoustic
delay of approximately 2ms. To estimate the HRR, two photomulti-
plier tubes (PMTs, model H11902-110, Hamamatsu photonics, Hama-
matsu, Japan) with a cut-off frequency of 20kHz are used to record
volume-integrated chemiluminescence from the flame. In the perfectly
premixed flames investigated in the present work, time-resolved chemi-
luminescence measurements provide a qualitative indicator of the in-
stantaneous heat release rate of the flame and, to some extent, allow to
infer the equivalence ratio of the flame [40]. The first PMT is equipped
with an optical bandpass filter with a center wavelength of 310 nm and
a full width at half maximum (FWHM) of 10 nm (Asahi spectra, Tokyo,
Japan) to record chemiluminescence from OH* radicals in the flame.
The second PMT is equipped with a 430 nm-centered optical bandpass
filter (FWHM 10nm, Asahi Spectra, Tokyo, Japan) to monitor CH*
chemiluminescence. Signals from the microphone and both PMTs are
recorded on a National Instrument BNC-2110 data acquisition card at
a sampling rate of 40 kHz. We also perform chemiluminescence imaging
to examine the flame shape and its dynamics. The imaging setup and
results are shown in Appendix A.

3. Thermoacoustic behavior of the burner

Even though self-excited thermoacoustic instabilities in confined
premixed bluff-body-stabilized CH,/H,/air flames have been stud-
ied [38,41-43], the pronounced sensitivity of thermoacoustic insta-
bilities to burner geometry and boundary conditions [23] warrants
a thorough characterization of the thermoacoustic behavior of this
specific burner across its operating range in order to establish a baseline
for the active control results discussed in Section 5.

Fig. 2 illustrates a typical acoustic pressure signal recorded during
a thermoacoustic instability. The acoustic pressure signal is harmonic,
at a frequency close to f;, ~ 500 Hz, marked with a red dot in the power
spectral density in Fig. 2, corresponding to the first longitudinal mode



B. Akoush et al.

Combustion and Flame 282 (2025) 114406

70 mm
{ A
@m E\
ég(ﬁ = Quartz
N ] '~ Tube
o
(9p]
Cooling
X Water
HEX
T T | HEX_ | Microphone
% Wave Guide %
= =
o/ =
MFC Plenum Flow Path
) Measurement Signal
Horn Driver

- Control System

Fig. 1. Experimental setup of lab-scale burner. The RL agent operates on a standard desktop computer with a built-in data acquisition card. It communicates the
control parameters (gain g and phase shift ) to the real-time control loop, which operates on a field programmable gate array (FPGA) device. MFC: mass flow

controller; PMT: photomultiplier tube; HEX: heat exchanger.
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Fig. 2. Acoustic pressure signal measured by the microphone during a ther-
moacoustic oscillation. The burner was operated at a representative condition,
u, = 225ms”', ¢ = 0.8, and Xy, = 55%. Pressure signal in the time
domain (top) and power spectral density of the pressure signal (bottom). The
red circle and red dashed lines illustrate the fundamental frequency of the
thermoacoustic oscillation. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

of the combustion chamber. In what follows, we report the amplitude
and frequency f;, of the instability based on the maximum of the power
spectral density of the acoustic pressure measured at the combustor
backplane.

As a first step to characterize the burner, we examine its thermoa-
coustic behavior as a function of two key operating parameters: the
equivalence ratio ¢ and the hydrogen volume fraction in the fuel Xy,
while keeping the bulk velocity of the reactants through the injection

system constant at u, = r1/ (Sy,p,) = 22.5ms~!, with s the reactant
mass flow rate, Sj,; the cross-sectional area of the injection system at
the dump plan, and p, the density of the unburnt reactants. ¢ and Xy,
are known to affect the flame shape, length, and angle in this type
of burner, therefore significantly affecting the flame transfer function
and the thermoacoustic stability of the burner [38]. This is ideal to
characterize an adaptive control scheme. The results are shown in
stability maps in Fig. 3 in which we report the pressure amplitude
at the fundamental frequency (Fig. 3(a)), the frequency of the pres-
sure fluctuations (Fig. 3(b)), and the Rayleigh integral (Fig. 3(c)) of
thermoacoustic oscillations as a function of operating conditions. The
thermoacoustic source term, also known as Rayleigh integral RI, is
calculated as the contribution of the heat release rate to the acoustic
power radiated by the flame [44,45]:

_7—15 Ty Lo

RI
v T Ji=o Do Toy*

dt, 2

where -/, respectively, denote fluctuations and mean values of the
signal, y is the heat capacity ratio, Q is the total time-averaged heat
release rate of the flame, I+ is the integrated OH* chemiluminescence
emission of the flame, assumed to be proportional to the instantaneous
heat release rate for this premixed flame, and p, is the atmospheric
pressure. 7 is the integration time used for the calculation. We compute
O using the reactant mass flow rates while assuming complete combus-
tion. High values of RI are observed during combustion instabilities
characterized by high-amplitude pressure fluctuations that are in phase
with the unsteady heat release. In contrast, under thermoacoustically
stable conditions, the acoustic source term remains low and close to
zero, indicating reduced fluctuation amplitudes and weak coupling
between pressure oscillations and unsteady heat release.

The amplitude of the acoustic pressure fluctuations near the com-
bustor dump plan, Fig. 3(a), shows a strong dependency on Xy,
increasing from approximately 110 dBgp; at the fundamental frequency
with pure CH, to 150 dBgp; for operation at higher H, mixture,
Xy, 2 40%. This increase in acoustic pressure level is due to a
supercritical Hopf bifurcation, a common occurrence in thermoacoustic
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absence of thermoacoustic instabilities.
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Fig. 4. Acoustic pressure fluctuations recorded near the backplane of the combustor for u, =22.5ms

~! and ¢ = 0.8, with increasing hydrogen enrichment in the

fuel: (a) Xy, =0; (b) Xy, = 40%; (¢) Xy, = 41%; (d) Xy, = 43%; (e) Xy, = 50%; (f) Xy, = 80%.

systems [23], leading to a limit-cycle thermoacoustic instability as
Xy, is increased. The transition between stable and unstable operation
follows a parabolic shape in Xy, — ¢ space. This is consistent with the
Rayleigh integral, Fig. 3(c), which features high values in the unstable
region. The frequency of the instability spans the range between 480 <
fo S 550Hz, Fig. 3(b), corresponding to the first longitudinal mode of
the combustion chamber, f); ~ ¢/[4(L,+0.4D,)] = 525Hz. f, increases
with increasing Xy, and ¢, most likely due to a higher temperature
and sound speed within the combustion chamber and changes in the
flame’s describing function [38,46].

To examine in more detail the transition from stable to unstable
operation, we keep both the injector bulk velocity and equivalence
ratio constant at u, = 22.5ms~! and ¢ = 0.8, and examine the effect
of Xy, as the control parameter. At this condition, Xy, 2 42% are
thermoacoustically unstable conditions. This trend is almost identical
to the results by Aguilar et al. [47] in a similar configuration with a
shorter and narrower combustion chamber.

As Xy, is increased, the flame gradually shortens and transitions
from a tulip shape at Xy, S 30% to a V-shape at 30% < Xy, S
65%, and finally to a M-shape, Xy, < 65%, see Appendix A. In Fig.
4, characteristic acoustic pressure time traces are shown. Acoustic
pressure fluctuations remain low at Xy, < 40%, until short, higher
amplitude “bursts” are observed at XH2 =41% (Fig. 4(c)). At XH2 =43%
(Fig. 4(d)), acoustic oscillations are sustained, but present cycle-to-
cycle amplitude variations. These cycle-to-cycle variations, observed in
Fig. 4(c—d), are likely one of the main reasons why the acoustic pressure
fluctuations appear to gradually increase in the transition region in Fig.
3. At Xy, 2 50%, the thermoacoustic oscillations exhibit a limit cycle
behavior.

The flame shape, its evolution as a function of Xy,, and its impact
on the thermoacoustic behavior of the burner are further discussed in
Appendix A.

4. Active control using RL

Following the characterization of the thermoacoustic behavior of
our test rig, we now discuss the implementation of active control
using RL. RL is a subfield of ML in which an agent learns to make
optimal decisions in an environment by receiving feedback in the form
of rewards or penalties [33,48]. The goal is to learn a policy that
maximizes the cumulative reward over time.

The RL problem can be formulated as a Markov decision process,
defined by a tuple (S, A, P,r), where the state space S and action
space A are continuous. The reward function r quantifies the immediate
feedback received by the agent after taking an action. The transition
dynamics is governed by P, which defines the conditional probability
distribution of the next state given the current state and action. The
agent interacts with the environment over discrete time steps, generat-
ing trajectories Tygj = ([5, 0,710, [5,a, 71y, ..., [, 4, 7],), where each action
a, is selected according to the policy « as a function of the state s,,
a, ~ n(a, | s,). The objective of RL is to find an optimal policy z* that
maximizes the expected cumulative reward,

= arg max E(R | n), 3)

where R = Y &"r, represents the long-term cumulative reward in
which the future rewards are compounded over time with discount
factor ¢ € [0, 1]. Generally, to quantify R, RL relies on the state value
function (V) and state-action value function (Q) [49]. The state value



B. Akoush et al.

Combustion and Flame 282 (2025) 114406

Environment (FLAME)

! u! s
iv[ Injector }

Flame }

Burner Acoustic
Feedback

¥

4[((" Horn Driver

Signal
Processing

RI. state s

Fig. 5. Block diagram illustrating the control loop used in the present work.

function estimates the expected cumulative reward starting from state
s and thereafter following policy 7,

V7(s)=E[R]|s,x]. “4)

It measures the long-term benefit of being in state s under policy =,
which enables comparisons between states in terms of long-term future
rewards. Similarly, the state-action value function, also referred to as
the Q-value, estimates the expected cumulative reward after taking
action « in state s and subsequently following policy =,

Q"(s,a)=E[R] s,a,x]. 5)

RL models can be broadly categorized into two main methods:
model-free and model-based approaches [33]. In contrast to model-
based RL, which utilizes an explicit model for the behavior of the
system, P(s,,; | 5;.q,), model-free methods directly learn a policy func-
tion through trial-and-error interactions with the environment [33].
Although this approach could potentially lead to high sample ineffi-
ciency compared to a model-based approach, it is more robust and
favorable for challenging and difficult-to-model environments, such
as thermoacoustically unstable combustion systems. Therefore, we use
model-free RL in the present work.

In this section, we begin by describing the active control system,
detailing its components and the environment setup. Then, we intro-
duce the Soft Actor-Critic (SAC) agent, the RL algorithm employed for
suppressing the combustion instabilities, explaining its architecture and
training process.

4.1. Active control system

The present work uses the commonly employed microphone-loud
speaker—phase-shift-controller architecture [19,20] for the active con-
trol of thermoacoustic instabilities. The block diagram of this system
is shown in Fig. 5. The operating principle of this controller is to
generate a synthetic acoustic wave using the actuator, which excites the
flame almost in opposite phase to the pressure oscillation of the ther-
moacoustic instability, leading to destructive interference. The optimal
values of the control parameters g and 7, see Eq. (1), are a function of
the flame transfer function, of the burner’s acoustic response function,
and of the transfer functions of the measurement chain and actuator.
Consequently, the optimal values of g and = change as a function of the
operating condition, ¢ and Xy, . In the present work, we extend this
controller architecture by dynamically tuning g and z during burner
operation using a RL approach.

2@

p’ [kPa]
o

—— No Control

=2 —— Fixed Controller
0.0 2.5 5.0 7.5 10.0 125 15.0 17.5 20.0
t [ms]
1501 (b)
=
a
o 125
=
A 100
%)
a
75
0 250 500 750 1000 1250 1500 1750 2000

f[Hz]

Fig. 6. Acoustic pressure traces (top) and power spectrum measured at ¢ = 0.9
and Xy = 70% under different control conditions. In the “fixed controller”
case, the control parameters are fixed and set to g = 1.0 and 7 = 0.46 ms.

The synthetic acoustic wave is generated using a compression horn
driver (model D250-X, JBL, Los Angeles, CA, USA, with a frequency
response from 0.4 to 9kHz), directly connected to the injector tube
using a catenoidal horn adaptor as illustrated in Fig. 1. The control
signal to the loudspeaker is amplified using a KM750 audio amplifier
(Behringer, Willich, Germany). The signal ¢/ is synthesized by a real-
time FPGA instrument (Moku:Go, Liquid Instruments, Lyneham, ACT,
Australia, response time < 14 ps) using Eq. (1).

Before training the RL agent, we evaluate the control setup using a
“fixed controller”, which uses fixed control parameters g and 7, Fig. 6.
The “no control” case refers to the self excited instability. At ¢ = 0.9
and Xy, = 70%, the acoustic pressure exhibits substantial harmonic
oscillations, with a 2kPa amplitude. To suppress these oscillations,
we manually tune the controller, and operate it with fixed values of
g =1.0 and = = 0.46 ms. These parameters are found by trial and error
to be optimal for suppressing oscillations at this operating condition.
This “fixed controller” will be used as a baseline for comparison in
subsequent analysis, Section 5.
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4.2. Environment for combustion instability control

In RL, the environment represents the external system with which
the RL agent interacts. In this work, the environment is shown in Fig.
5 and includes the burner with an active flame, sensors, actuators,
and gain-delay function. The RL agent is implemented on a standard
desktop computer. When the agent takes a new action, it updates the
values of the control parameters g and = on the FPGA board. This occurs
at approximately 2 Hz.

Acoustic pressure p/, and chemiluminescence Iy« and Icy+ sig-
nals are recorded over a set period of time, ¥,... These signals are
pre-processed to provide a comprehensive characterization of the en-
vironment to the RL agent: eight statistical quantities are computed
to construct the environment’s state space s, € S at time 7, fusing
information from multiple heterogeneous sensors and providing a mul-
tifaceted characterization of the instability’s behavior. s, is represented
as a vector in R8:

root mean square amplitude of the acoustic pressure, s,o = p[,;
root mean square of chemiluminescence signals, s,; = I (’)H* s

n =1 ’
and s, =1/,

H*,rms’

mean value of the chemiluminescence signals, s,; = Ton+, and
Sp4 = Tcye, as well as their ratio, ;5 = Icy /Ioy*, as an indicator
of the burner’s operating equivalence ratio;

transfer function between pressure fluctuations p . and flame
chemiluminescence 1 6H*, calculated using the cross power spec-
tral density (CPSD) and power spectral density (PSD) based on the
Welch periodogram method [50], and evaluated at the fundamen-
tal wave frequency fy: 5,4 =Il CPSD(Y', Ioy=, fo)/PSD(®', fo) I,
the magnitude of the transfer function, and s,,; = ang [CPSD(p’ R
Ions» £o)], the phase of the transfer function.

%rec = 100ms is chosen such that s, can be estimated with sufficiently
low statistical uncertainties. We note that the RL agent is isolated from
the mass flow controllers and has no direct knowledge about the flow
rates of individual reactants. The RL agent only operates based on
acoustic pressure and chemiluminescence signals.

After evaluating s,, the agent imposes its action a, € A on the
environment. g, contains two elements: the gain g and the time delay =
of the real-time gain-delay control loop. As illustrated in Fig. 5, the real-
time gain-delay control loop is part of the environment and is operating
at all times. The action a, = (g,,7,) € R? of the RL agent therefore
performs an update to the parameters running on the FPGA chip, on
which the phase-shift controller is implemented. We constrain g within
the range [0, 3] (a.u.) and the time delay  to [0,2.8] ms, with the upper
bound corresponding to slightly more than the longest acoustic period
observed in this system. These bounds ensure that the agent’s action
remains within expected limits during the control process. After the
agent deploys an action, we wait ¥, = 200ms before measuring a
new state. T, is chosen to be longer than the transient growth/decay
of the pressure oscillation occurring when the controller is turned on
or off. By using this delay ¥, and by acquiring statistics over a
duration much greater than both the acoustic period and the burner
flow-through time, ¥, = 100 ms > fy !, we are able to achieve both
statistical convergence when computing the state s,, and a memory-less
behavior for the environment, thereby ensuring that the environment
behaves as a Markov process.

The reward function r is designed to simultaneously minimize the
pressure fluctuations in the combustor and the amplitude of the signal
sent to the loudspeaker, inspired by similar approaches found in the
literature [36]:
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g — & 2 T, — T, 2
_ / ’ t min t min
rn=C (Pms,,)—cp Prmss = Ca ((2— - 1) + <27 - 1) )
max min

&max ~ Emin
(6)
where C, and C, are constants chosen, through hyperparameter tun-
ing, to be 0.009Pa~! and 0.05, respectively. The gain and time delay
are scaled to range between [—1,1] using the action space bounds,
&min> 8max> Tmin ANd 7.,.¢, before computing the reward. The coefficient
C, is chosen to take the following form:

15 if p/ . <150Pa,
Co(Pime) =410 if  150Pa < pl - < 550Pa, )]
-5 if p;ms > 550 Pa.

The piecewise design for C, allows the reward function to dynamically
adjust based on p/ . This structure ensures that the reward provides
significant and non-linear incentives or penalties depending on how
far the agent deviates from complete suppression of the combustion
instability.

4.3. SAC agent

SAC is a RL model introduced to address two major challenges in
model-free RL: very high sampling complexity and weak convergence
properties [51,52]. It is a hybrid approach that combines aspects of
both policy gradient and value-based methods to find the optimal
policy z*. In SAC, neural networks (NN) are utilized to approximate
the three key functions defined in Eq. (3)-(5), which are essential for
learning and decision-making. The agent architecture, shown in Fig.
7, consists of five neural networks: a policy (ie. actor) network Ty
which selects the action g, as a function of the current state s,, two
Q-critic networks 0o, and 00, which approximate the state-action
value function, Eq. (5), a value network Vj, and a target value network
V5, which both approximate the state value function, Eq. (4). Each NN
consists of three layers and 256 hidden units per layer. The weights of
these neural networks are denoted in their respective subscripts. For
example, y represents the weights of the policy network z,, and @,
is the weights of the first Q-critic network Qy, . The training process
is divided into three main stages, discussed in detail in the following
paragraphs and in Algorithm 1:

1. Collect transitions: at each step, the agent interacts with the
environment to deploy an action q,, observe the resulting state
5,41, and generate a transition tuple (s;, a,,r,(s;,a,),s,,1). This
transition is then stored in the replay buffer D, a data structure
with capacity of 10° transitions, which retains past experiences
for future learning.

2. Compute objective functions: we randomly sample a subset /3
of the replay buffer containing 256 transition tuples to compute
objective functions J,, J,, and Jj, (Lines 14-17 in Algorithm 1).

3. Update neural networks: using the objective functions J,, Jo,s
and J),, we apply gradient descent to update the weights of the
NNs.

These steps are iteratively repeated until convergence.

The policy network, colored in blue in Fig. 7, maps the state space
S to probability distributions over the action space .4, which enables
the agent to explore the action space efficiently. While collecting transi-
tions (s;, a;, 7, 5,41), the action g, is sampled from a normal distribution
whose parameters, y and o, are computed using the policy network
z,,. Unlike other RL approaches that maximize the cumulative reward
in their policy objective function, SAC additionally maximizes the
entropy of each policy output to explore more diverse actions [51].
This approach has been especially successful in learning more stochas-
tic policies for complex environments [52]. By accounting for the
log-probability distribution of the action conditioned by the state,
—logz,(- | s), also known as entropy, in the calculation of the pol-
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Fig. 7. SAC architecture. Each NN output is color-coded to represent its contribution to the agent’s objective functions, where the color mapping facilitates
understanding the interaction between different NNs. More details on the implementation are provided in Algorithm 1. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

icy objective function J (y) (Line 14 in Algorithm 1), this approach
balances the agent exploration and exploitation more effectively [51].

The Q-critic networks Q,pj, colored in orange in Fig. 7, estimate the
state-action value function Q, which quantifies the cumulative reward
associated with taking an action a, given a state s, (Eq. (5)). We use
two Q-critic networks, O, and 0p,, to reduce the overestimation bias
when estimating the Q-value, which could otherwise lead to suboptimal
policies or unstable learning [53]. Each Q-critic network is trained
independently to generate separate outputs. The objective functions
Jo(@;), Lines 15 and 16 in Algorithm 1, are computed to minimize
the difference between the predicted Q and Q, the cumulative future
reward. O is estimated using the target value network V5 [51,52], with
a discount factor & = 0.99.

The value network V), estimates the state value function, i.e., the
expected long-term reward starting from state s, and following the
current policy 7, ((4)). The objective function of the value network
Jy(0), Line 17 in Algorithm 1, aims at minimizing the discrepancy
between the value network and the expected value function. Starting
from states s € B, actions @ are resampled using the current policy r,,,
see Line 13 in Algorithm 1. By combining these resampled actions and

the Q-critic networks, we build an estimator V for the expected value.
At this step, we estimate the Q value as the minimum estimates from
the two Q-critic networks [51,53].

The target value network V; provides a more stable version of the
value function. This approach helps stabilize updates in the Q-critic
networks and prevents Q-value overestimation, which could destabilize
the learning process.

The weights of these neural networks are updated using mini batch-
gradient descent based on objective functions J,(y), Jo(@)), Jo(P,),
and J,(9), with one exception: the weights & of the target value
network are updated by applying an exponential moving average of
the value network weights 0 with a smoothing factor g = 0.005. This
approach allows for more stable gradient estimates than single-sample
updates, which reduces the variance in the parameter updates. Lastly,
our implementation uses Adam optimizer [54] with learning rate 4 set
to 10~* for all NNs.

Unlike epoch terminology in ML training, RL models are trained
based on the number of episodes, which represents a complete sequence
of interactions between an agent and the environment. It begins from
an initial state where g = 0 and = = 0 and proceeds through a series of
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Fig. 8. (a) SAC’s cumulative reward during training at ¢ = 0.9 and Xy, = 70%. The “Mean” and “Std” in this plot correspond to the mean and standard deviation
across the five agents trained at this operating condition. (b-d) State and actions during the training process. Each dot corresponds to one environment step. (b)
Acoustic pressure fluctuations p:mh; (c) gain g; and (d) delay 7 of the control loop. (b-d) The pressure fluctuation and action taken at each environment step are

reported based on the episode to which the environment step belongs.

Algorithm 1 Soft Actor-Critic

1: Initialize NNs: 7,,, Ogp 1, Qp2, Vps Vg

2: Initialize replay buffer D and environment FLAME
3: for each episode do
4: s, < FLAME(q, = (0,0))
5 for each environment step t = 1, N, do
6: Collect transitions:

7: a; ~my, (- | s)

8: s;41 < FLAME(a,)

9: D«<Du {(s,,at,r(s,,a,),s,ﬂ)}

10: Compute objective functions:

11: B = sample N transitions from D
12: sample actions a ~ z,,(- | s) for s € B
13: compute log probability log 7, (@ | 5) for s € B
14: J,(p) = IBI D log 7, (@ | s)—min;_; » Qd,j(s,d)
. 2

15: 10@) = & Tgurinen (o 500 = 0s.0)) ', for j € (1,2)
16: with Q(s, a) =r(s,a)+ é’Vg(s’)

2
17: Jy(0) = ‘B‘ 256,3 5 (Vy(s) = V(5))

18: with V(s) = min;_; » thj (s,a@) —logm,(a| s)
19: Update neural networks:

20: v <y =1, V,J.(y)

21: B — B — 4oV Jo(@)) for j € {1,2)

22: 0 —0—AyVyJy (0

23: 0« po+(1-po

24: end for

25: end for

actions and observations. Every interaction between the agent and the
burner is referred to as an environment step. A complete episode spans
N, = 60 environment steps or transitions, with early-episode termina-
tion occurring after 35 steps if the agent fails to suppress the instability.
Each environment step takes approximately 400 ms, contributing to the
overall episode duration.

5. Results
In this section, we discuss our adaptive active control policy, which

can effectively mitigate combustion instabilities across a wide range
of fuel compositions and equivalence ratios. Section 5.1 discusses the

training process of the RL model on a single operating condition. We
then train the model across an extended operating range in Section 5.2.
Finally, we discuss in Section 5.3 the optimal control parameters g and
7 identified by the RL model.

5.1. Learning an optimal control policy for a single operating condition

This section presents results from training SAC to dampen com-
bustion instabilities at a single operating condition of ¢ = 0.9 and
Xy, = 70%. To assess the robustness of our results, we repeat the
training five times, thereby creating five agents, each initialized with
a different random seed, i.e., different NN weights initialization. To
evaluate the learning progress of the agent, we track the cumulative
reward, defined as the sum of all rewards in one episode, Fig. 8(a). We
also monitor, for each episode, the amplitude of the acoustic pressure
fluctuations, p/ ., Fig. 8(b), and the actions taken by the agent, Fig.
8(c,d). In the early stages of training, the agent has no knowledge of
the behavior of the flame, the combustor, and the control system. It
samples from a large range of both g and r to explore the state-action
space, thereby achieving highly variable levels of acoustic pressure
fluctuations and a low cumulative reward. As training progresses, the
cumulative reward increases noticeably, indicating that the agent is
effectively learning and improving the policy. After approximately 10
episodes, we note that the range of gain parameter g explored by the
agent reduces as it begins to focus on g < 1.5. After 34 episodes, we
observe a pivotal shift: the agent begins to take relatively good actions
that are able to consistently dampen the thermoacoustic instability
and yield a higher reward. This transition aligns with the appreciable
drop in the variance of the action space (g,7) suggesting that the
agent is narrowing its exploration range. In the later stages of training,
episodes > 40, the cumulative reward reaches a plateau as the agent
converges to a bounded range of actions, indicating that the agent has
learned to generate precise control parameters to effectively suppress
the combustion instability. We refer to this model as RL-SAC I for later
discussion.

Fig. 9 illustrates the damping of thermoacoustic oscillations by the
RL-SAC I controller on two operating conditions. Initially, the controller
is inactive and we activate it at + = Oms. The combustion system is
initially at a limit cycle oscillation, with pressure fluctuation amplitudes
on the order of 2kPa. As the RL-SAC I controller is activated (r =
Oms, red dashed line), the acoustic pressure initially shows a brief
excursion after which the oscillation is dampened in O(100 ms). After
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Fig. 9. Acoustic pressure traces recorded near the backplane of the combustor at (a) ¢ = 0.9 and Xy, = 70% (training condition) and (b) ¢ = 0.65 and X;;, = 70%.
The RL-SAC I controller is initially turned off and is activated at r = 0 (red dashed line). The inset is a zoom into the first 100 ms after the controller has been
turned on. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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this initial transient, r > 100 ms, the pressure trace shows that the RL-
SAC I controller is able to fully suppress the instabilities at ¢ = 0.9,
Fig. 9(a). The small fluctuations in the pressure traces are primarily
caused by combustion noise [55]. The Rayleigh integral, discussed in
the following section, demonstrates that the pressure fluctuations and
heat release are uncorrelated. In contrast, at ¢ = 0.65, Fig. 9(b), we
observe a noisy, bursting behavior, albeit at a significantly reduced
amplitude, which the RL-SAC I active controller is not able to fully
dampen.

5.2. Learning an optimal adaptive control policy

In this section, we extend the training process of our RL agent on
four operating conditions, in an effort to develop an adaptive control
system that can operate over a wide range of ¢ and Xy, with minimal
training. During training, we keep Xy, = 70% constant to test the
RL’s capability in extending to other fuel compositions outside of the
training range. We consider four distinct equivalence ratios. We use the
following notations:

Agent RL-SAC I is the one discussed in Section 5.1. It is trained
until convergence on a single condition ¢ = 0.9.

Agent RL-SAC II is initially trained at ¢ = 0.9, and then at ¢ =
0.65.

Agent RL-SAC III’s training spans three conditions ¢ = 0.9, 0.65,
and 0.7.

Agent RL-SAC IV’s training expands to a fourth conditions ¢ =
0.9,0.65,0.7, and 0.8.

10

Fig. 10(a) shows the cumulative reward at each episode while extend-
ing the SAC training across these four conditions. During the first 60
episodes, the agent is trained on a single operating condition, ¢ = 0.9
and Xy, = 70%, see discussion in Section 5.1. At the 60" episode, the
equivalence ratio is changed to ¢ = 0.65 and the cumulative reward
suddenly drops, indicating that the RL agent has identified that the
control policy it learned previously at ¢ = 0.9 is no longer suitable
at this new operating condition. This is consistent with the increased
variance in the gain and the delay (see Fig. 10(c-d)) along with
higher pressure fluctuations in Fig. 10(b). Therefore, the policy needs
additional tuning to generalize to a new behavior of the flame. Around
the 85" episode, as the cumulative reward reaches a new plateau and
the action taken by the controller converges toward the optimum value,
we again change the operating conditions of the burner to ¢ = 0.7.
We observe that the agent is capable of adapting to a new operating
condition within approximately 15 episodes. In contrast to the change
of operating condition ¢ = 0.9 — 0.65, during the transition ¢ = 0.65 —
0.7, the cumulative reward increases slightly. This behavior is even
more striking during the transition ¢ = 0.7 — 0.8. This indicates that the
agent is exploiting more than exploring after these changes of operating
conditions. The policy developed at the 90 episode (¢ = 0.65 —
0.7) already shows a good degree of generalizability and only requires
minor additional tuning unlike the policy at the 60" episode. The small
adjustments in operating conditions, ¢ = 0.65 — 0.7, and ¢ = 0.7 —
0.8, refine the policy incrementally. Consequently, the agent changes
its focus from learning and exploration to refining and exploiting the
learned control strategies. This is clearly marked by the absence of any
sudden drops in the cumulative reward, combined with low variance
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Fig. 11. Testing of the active control schemes at different operating conditions and learning stages. (a-e) Amplitude of the harmonic acoustic pressure fluctuation
near the combustor backplane. (fj) Rayleigh integral (Eq. (2)). (k-n) Median value of the controller gain g; (o-r) delay z. (k-r) Gray corresponds to g = 1.0
and v = 0.46ms, the control parameters used in the “fixed controller”. (Column 1) No active control. (Column 2) Fixed control parameters tuned for optimal
suppression at ¢ = 0.9 and Xy, = 70%. (Columns 3-5) SAC based controllers trained on an increasing numbers of operating conditions. The operating conditions

used for training of the SAC controllers are shown with stars.

in the actions taken by the agent. The consistent performance of the
agent across five different random seeds and four operating conditions
highlights the stability and reliability of the learned policy.

The strength of our RL approach, however, mostly resides in its
adaptability. In Fig. 11, we test our RL agents across a wide range of ¢
and Xy, conditions, corresponding to all conditions at which thermoa-
coustic instabilities are observed in the absence of active control (see
Fig. 3). During the measurements leading to Fig. 11, the SAC controllers
are operated in testing mode, ie., all the trainable parameters in the
NNs are kept constant. While the fixed parameter controller is able
to dampen the thermoacoustic oscillations at certain conditions (dark
regions in Fig. 11(b)), its performance is sub-optimal and uneven across
the operating range of the burner. At lean conditions, the acoustic
pressure amplitude remains high and a strong combustion instability
is present, as illustrated by the elevated Rayleigh integral in this
region, Fig. 11(g). This lack of generalizability of fixed-parameter gain-
delay controllers is consistent with the literature [21]. In contrast, the
simplest RL-based controller, RL-SAC I, is able to substantially reduce

11

the amplitude of thermoacoustic fluctuations across almost the entire
operating range, Fig. 11(c). In regions of the operating map closer to the
training condition, RL-SAC I achieves a comparable suppression in the
acoustic amplitude in the range of 120—130 dBgp;, similar to the training
condition. Even in regions in which acoustic pressure fluctuations
remain elevated, the oscillation amplitude and thermoacoustic source
term R/ are both significantly reduced compared to the “no control”
and “fixed controller” cases. This happens as RL-SAC I continuously
refines its policy to maximize the reward by reducing the acoustic
amplitude. It effectively explores diverse actions that contribute to
the goal of suppressing the combustion instabilities even when trained
on a single operating condition compared to the fixed action in the
“fixed controller” case. For example, in certain regimes of operating
conditions where the effective control demands that the gain exceeds
unity, the fixed controller fails to achieve suppression due to its fixed
setting. In contrast, RL-SAC I adapts to these conditions, selecting the
necessary actions dynamically to maintain effective control, discussed
in Section 5.3. In addition, the ability of RL-SAC I to perform better
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than a fixed-parameter controller likely indicates that RL-SAC I is able
to leverage the expanded state space s, to infer a reasonable black-
box model for the behavior of the burner and its response to a policy,
thereby extrapolating better control parameters even at conditions
differing significantly from its training.

As we fine-tune the SAC controller by training at additional op-
erating conditions, the overall performance of the model improves
rapidly, as shown in Fig. 11 (columns 4-5). RL-SAC IV, shown in the
rightmost column of Fig. 11 and trained 2.5 times longer than RL-
SAC I, on a total of four conditions, is the most robust controller,
consistently suppressing combustion instabilities across the majority of
the operating range, as shown by the Rayleigh integral in Fig. 11(j).

Catastrophic forgetting [56] is generally a major concern when
an agent is trained on multiple conditions. It occurs when learning
a new condition interferes or replaces the knowledge learned from
previous conditions, resulting in forgetting the policies that worked
well under previous conditions. However, our agent has maintained
a balance between integrating new information and retaining useful
strategies from previous conditions due to the replay buffer [57]. This
is consistent with the enhanced performance from RL-SAC I to RL-SAC
IV as shown in Fig. 11. This suggests that the policy has been fine-
tuned, such that it mitigates the risk of catastrophic forgetting, thereby
preserving the robustness and efficiency of the learned control scheme.

In Fig. 11(e), we nevertheless observe that the acoustic pressure
amplitude remains slightly more elevated at certain conditions, espe-
cially at lower Xy, near the boundary of the tested domain. These
regions of lower efficacy of the RL-SAC IV controller are found near the
location where we observe a bifurcation between stable and unstable
operation in the absence of active control, Fig. 11(a). Although the
acoustic pressure fluctuations are reduced by approximately 20 dBgp;,
when using active control, this lower performance is unexpected and
should be investigated in future work.

In the supplementary information, Fig. S1, we present a more quan-
titative assessment of the reduction in oscillation amplitude achieved
by each controller over the entire test set. For RL-SAC IV, 50% of
the test conditions exhibit reductions of at least 26 dB in the pressure
fluctuations, with some exceeding 40 dB. This represents a notable im-
provement compared to RL-SAC I, which achieves at least 26 and 14 dB
reduction on only 25% and 50% of the test conditions, respectively.
These results show the convergence of the controller with additional
training and demonstrate the suitability of our approach in mitigating
combustion instabilities across a large range of operating conditions
and flame types.

5.3. Optimum actions chosen by RL controller

Fig. 11(k-r) shows the parameters g and = determined by all four
controllers as a function of operating conditions. For the reader’s conve-
nience, the color map in Fig. 11 is centered around the values identified
in Section 4.1 for the condition ¢ = 0.9 and Xy = 70% and used for the
“fixed controller”. The range of action used by the RL-SAC IV controller
is quite large: depending on operating condition, the gain parameter
spans values ranging from 0.75 to 1.6, Fig. 11(n), while the delay
parameter ranges from under 0.4 ms to 0.8 ms, Fig. 11(r), illustrating the
benefit of an adaptive controller to address thermoacoustic instabilities
in highly fuel-flexible combustion applications. Fig. 11(n, r) reveals
distinct regimes identified by the RL-SAC IV controller: at ¢ > 0.9 the
optimal gain value to suppress the instability is on the order of g < 1.
In contrast, at very lean conditions ¢ < 0.6, a much higher gain is
required. A similar pattern can be observed for the delay parameter z:
the controller uses longer r at very lean conditions, which is expected
as the flame and its associated convective timescale increases at leaner
operating conditions. The dependency of the delay parameter on Xy, is
less pronounced, with a general trend of slightly lower z being used at
high Xy, . This behavior might be due to the training being conducted
at constant hydrogen enrichment Xy, = 70%. RL-SAC II's optimal
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actions differ only slightly from RL-SAC IV’s, indicating that additional
training only leads to minor modifications to the control policy to
further optimize and improve the generalizability of the control policy.
Notably, for ¢ < 0.55, an increase in the gain values is observed.
This increase correlates with a significant reduction in the acoustic
amplitude during testing in this region of the operating map, leading
to further improvements in the agent’s performance. It is remarkable to
observe that RL-SAC I and RL-SAC IV follow very similar trends in the
actions they take as ¢ and Xy, are varied, Fig. 11(i, p). Despite being
trained on a single operating condition, RL-SAC I has correctly identi-
fied that g should be decreased (resp. increased) at richer (resp. leaner)
equivalence ratios, and that r should be shorter (resp. longer) at richer
(resp. leaner) equivalence ratios, further illustrating the capability of
our SAC controller to reasonably extrapolate a suitable control policy
from minimal training.

6. Conclusions

In this work, we experimentally demonstrate that a deep RL based
active control system can suppress combustion instabilities over a wide
range of operating conditions in a premixed turbulent CH,/H,/air
bluff-body-stabilized flame. The deep RL controller uses a SAC archi-
tecture. The state space used as input by the controller leverages both
acoustic and chemiluminescence sensors. By combining these hetero-
geneous sensors and using domain-specific knowledge to preprocess
their signals, at its training condition, the SAC controller is able to
match and outperform the performance of a fixed parameter controller.
More importantly, our extensive testing shows that it is able to tune
itself to adapt to unseen operating conditions. A controller trained on
a single operating condition is able to significantly dampen thermoa-
coustic oscillations over the extensive operating range of the burner.
With additional training on four distinct operating conditions, the SAC
controller’s performance is further improved, and it is able to achieve
at least 26 dB reduction in acoustic pressure fluctuations on more than
50% of the investigated operating conditions.

This SAC controller represents a promising technique to reduce the
amplitude of acoustic pressure fluctuations in fuel flexible systems.
Future research should focus on fully suppressing weak thermoacoustic
bursts, which occur in certain regions of the operating map despite
active control. These bursts, which are highly stochastic in nature, have
proven a challenge for the current controller. This could be addressed
by considering a control system with additional degrees of freedom in
their real-time control system.
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Appendix A. Flame shape and flame dynamics

To examine the flame shape, a high speed camera (Phantom
TE2010, Vision Research, Wayne, NJ, USA), equipped with an optical
filter (centered at 425nm with a FWHM of 50nm, Edmund Optics,
Barrington, NJ, USA), is used to capture line-of-sight-integrated CH*
chemiluminescence images at a repetition rate of 6 kHz. The exposure
time is 166.4ps. In addition, a Tucsen Dhyana 400BSI V3 sCMOS
camera, equipped with a 58 mm lens (Voigtlander, Germany), with an
aperture set at f/8, is used to record the flame images under stable
conditions. A bandpass filter centered at 430 nm (10 nm FWHM, Edmund
Optics) is used to record CH*. The exposure time is 5.

In Fig. A.1, we show CH* chemiluminescence images of the flame
at different levels of hydrogen in the fuel stream. An inverse Abel trans-
form is used to deconvolve the shape of the flame under an assumption
of axisymmetry. For Fig. A.1, we use the active control system with
fixed parameters to suppress all thermoacoustic oscillations. We show
the state of the flame at rest, in the absence of combustion instabilities.
At Xy, = 0, the pure methane flame has a characteristic “tulip” shape.
As Xy, is increased, the flame shortens and transitions to a “V” shape.
A very weak chemiluminescence signal is visible in the outer shear
layer of the jet, which is far weaker than the flame anchored along
the inner shear layer between the main jet and the inner recirculation
zone located above the bluff-body. Between 40% < Xy, < 50%, in the
region in which the bifurcation to thermoacoustic instability occurs,
we do not observe any sudden change in the topology of the flame.
We only observe a gradual shortening of the flame, accompanied by a
minor increase in the strength of the chemiluminescence from the outer
shear layer. Between 50% < Xy, < 80%, the flame gradually transitions

= 0%

= 40% =41%

h [cm]

Ib[CHﬂ
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to an “M” shape. For all operating conditions investigated, the flame is
located away from the wall, in contrast to previous work [47].

Regarding flame dynamics during combustion instabilities, we show
high speed chemiluminescence imaging of the flame during limit cycle
oscillations at two conditions, Xy, € {50%;80%}, in Fig. A.2. At
each condition, oscillations are recorded for 1.16s at 6kHz. Images
are processed using dynamic mode decomposition [58] to reconstruct
phase-averaged images at the main frequency of oscillation, to which an
inverse Abel transform is subsequently applied. The reader is referred
to Ref. [59] for the detailed procedure.

At both conditions, we observe that the flame’s shape response
to acoustic pressure follows a well-known behavior for M- and V-
shaped flames identified by Schuller et al. [60]. In these types of
flames, the flame behavior is dictated by vortex shedding from the
injection system. At Xy, = 50%, most of the unsteady heat release rate
fluctuations occur near the tip of the flame, while the flame angle does
not show significant fluctuations. At Xy, = 80%, the “M”-shaped flame
shows a cyclic lengthening and shortening. Similar behaviors have been
observed in the literature, for laminar, turbulent, and swirled premixed
flames [61-64].

Observations of the flame shape are helpful to interpret the ther-
moacoustic behavior in Fig. 4. Let us first consider the transition
occurring between 40% < Xy < 43%. In this interval, the flame
s “V”-shaped. The only significant change is a gradual shortening
caused by the increased flame speed of the CH,/H,/air mixture [38].
Well-established scalings indicate that the characteristic time delay
associated with the flame transfer functions of such premixed “V”
flames gradually decreases [38,60,65], leading the flame’s transfer
function into a region of higher gain and shorter phase with regards

= 43%

= 50% = 80%

Fig. A.1. CH* chemiluminescence images of the flames at u, = 22.5ms™! and ¢ = 0.8. From left to right, the volume fraction of hydrogen in the fuel, Xy , is
gradually increased. These images are time-averaged and an inverse Abel transform is used to simplify interpretation. For Xy, > 41%, the active control system
is used to suppress thermoacoustic oscillations. Note that, in all of these images, the walls of the confinement tube are located outside of the field of view, far
from the flame itself. The vertical line near the centerline is caused by spurious reflections in the quartz tube used for the combustion chamber.

6 =rn/3 0= rr/3

0=n 6 =5m/3

0 = 4n/3

Fig. A.2. Phase-averaged chemiluminescence images of the flame at u, = 22.5ms™!,¢p = 0.8, Xy, = 50% (top), and Xy, =80% (bottom). These images are obtained
during a limit cycle oscillation. Phase-averaging is performed using a dynamic mode decomposition procedure [58], followed by an inverse Abel transform
(see [59] for a detailed description of the methodology). Note that the phase reference is arbitrary.
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to perturbations, which can be more favorable for thermoacoustic
oscillations [66]. For higher H, content, 50% < XH2 < 80%, in a region
where thermoacoustic instabilities exhibit a limit-cycle behavior, whose
amplitude slightly decreases with Xy,, the flame adopts a distinct
“M” shape. The reduced gain of the flame-describing function of “M”
flames [64] could explain the decrease in the amplitude of the limit
cycle observed at high Xy, in Fig. 3.

Appendix B. Supplementary data

The supplementary information presents additional quantitative
data to assess the performance improvements achieved with the RL con-
trollers. The unprocessed experimental data used for characterizing the
thermoacoustic instabilities in Section 3 is publicly available through
the Stanford Digital Repository [67].

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.combustflame.2025.114406.
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