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Many state-of-the-art machine learning (ML) fields rely on large datasets and massive deep learning models
(with ©(10°) trainable parameters) to predict target variables accurately without overfitting. Within combus-
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tion, a wealth of data exists in the form of high-fidelity simulation data and detailed measurements that have
been accumulating since the past decade. Yet, this data remains distributed and can be difficult to access. In
this work, we present a realistic and feasible framework which combines (i) community involvement, (ii)
public data repositories, and (iii) lossy compression algorithms for enabling broad access to high-fidelity
data via a network-of-datasets approach. This Bearable Large Accessible Scientific Training Network-of-
Datasets (BLASTNet) is consolidated on a community-hosted web-platform (at https://blastnet.github.io/),
and is targeted towards improving accessibility to diverse scientific data for deep learning algorithms. For
datasets that exceed the storage limitations in public ML repositories, we propose employing lossy compression
algorithms on high-fidelity data, at the cost of introducing controllable amounts of error to the data. This
framework leverages the well-known robustness of modern deep learning methods to noisy data, which we
demonstrate is also applicable in combustion by training deep learning models on lossy direct numerical
simulation (DNS) data in two completely different ML problems — one in combustion regime classification and
the other in filtered reaction rate regression. Our results show that combustion DNS data can be compressed by
at least 10-fold without affecting deep learning models, and that the resulting lossy errors can even improve
their training. We thus call on the research community to help contribute to opening a bearable pathway

towards accessible big data in combustion.

1. Background
1.1. Introduction: A big view of machine learning

Combustion machine learning (CombML) offers numerous oppor-
tunities in advancing predictive modeling, scientific discoveries, and
intelligent control [1]. One of the most crucial aspects of machine
learning (ML) is the availability of data, which in combustion, typically
exist in the form of simulation data and experimental measurements.
In many ML fields outside of combustion, massive and diverse datasets
are the key components in ensuring high predictive accuracy and good
generalizability [2]. For example, in computer vision, a state-of-the-art
ML field, massive and diverse datasets such as the image recognition
dataset ImageNet [3] (170 GB, 1000 classes, 1.4M labeled images)
have enabled ML methods to out-perform human capabilities in image
recognition [4,5]. This achievement was made possible by the co-
existence of deep learning architectures, such as the 152-layer deep
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ResNet [5], and the aforementioned ImageNet dataset, along with its
corresponding community-involved image recognition competition [4],
where researchers could develop ML methods without the laborious
task of data collection, and compare results in a transparent manner
via an accessible benchmark dataset.

In contrast, datasets found in flow physics, such as the (~500 TB)
Johns Hopkins Turbulence Database [6], are not as diverse (currently
consisting of nine flow configurations) but can be much greater in
size due to increased degree-of-freedom and resolution requirements
when compared to digital images. The fidelity and quality of this type
of dataset is highly beneficial for applications in detailed scientific
analysis, but its lack of diversity, when compared to other datasets [3,7]
from the broader ML community, can be detrimental for training
ML algorithms, especially for predicting in unseen configurations. In
order to meet this challenge, the flow physics community has devel-
oped knowledge-guided or physics-informed ML [8], where domain
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knowledge can be leveraged towards augmenting datasets, constraining
optimization routines, and customizing model architectures to learn
well from small scientific datasets, i.e., the small data regime.

Outside of flow physics, ML research tends to focus on big data.
Many improvements (including breakthroughs in model architecture
such as residual blocks [5], batch normalization [9], and rectified linear
units [10]) in deep learning have been tailored towards developing big
models [11] that gain higher predictive accuracy with growing amounts
of data [2]. We note that both small and big data paradigms do not
necessarily compete, and remarkable results have been achieved within
CombML by combining ideas from both approaches [12].

Recent developments in big data ML could inspire potential research
directions for CombML. In natural language processing (NLP), founda-
tion models [13] have led to state-of-the-art accuracies in a wide range
of language prediction tasks. A foundation model is a broadly accessible
and big ML model (typically with ©(10°) trainable parameters) that
has been pre-trained on massive and diverse datasets, which can then
be fine-tuned at later stages, by further training with smaller specific
datasets (through transfer learning [14]), for application to specific
problems. This eliminates the need to build and train a powerful
ML model from scratch, and reduces the amount of data required to
solve a tailored ML problem after the foundation model has been pre-
trained and shared. With this new paradigm, one can envision a future
development where only small amounts of additional data is needed
to fine-tune pre-trained CombML foundation models in order to make
accurate and affordable predictions of flame physics and chemistry
in unseen combustion configurations. However, this ML approach is
currently largely feasible only in NLP, where low-dimensional read-
ily labeled text data can be easily mined. In computer vision, while
the practice of transfer learning still persists, foundation models are
comparatively nascent due to dimensionality of images (height, width,
and channels, i.e., Ny X Ny, X N¢), and the larger cost of generating
labels, which typically involves manually annotating images for image
recognition or object detection.

In CombML, the massive, diverse, and labeled dataset required to
eventually develop foundation models can certainly exist. A recent
review [1] on CombML identified over 200 direct numerical simulation
(DNS) cases, which can potentially serve as the basis of a public
CombML database. We envision that this database can be further
populated with a wide variety of existing experimental measurements
and large-eddy simulation (LES) data, as well as future data that is
expected to grow in complexity and size with advancements in mea-
surement techniques and computational capabilities. Since simulation
and experimental data are readily labeled with high-resolution quanti-
ties, CombML does not face challenges tied to laboriously annotating
datasets, as seen in computer vision. Instead, this community faces the
Herculean challenge of storing and accessing data with much higher
degrees-of-freedom (length, height, width, time, and scalars, i.e., N; X
N XNy XN,;XNy). This becomes especially true when considering the
scale of data from peta/exascale simulations [15,16] and high-speed
measurements [17].

In summary, massive, diverse, and public datasets for reacting
and non-reacting flows are necessary to advance CombML within the
big data paradigm. Specifically, the existence of these datasets would
enable CombML researchers:

« To minimize the laborious task of data collection, which enables
researchers to focus on advancing CombML techniques.

» To make objective and transparent evaluations of predictive ac-
curacies from different ML approaches on common datasets.

» To further leverage existing architecture advances from the big
data paradigm, and to foster a CombML paradigm that aligns with
the broader ML community.

» To improve accessibility to state-of-the-art transfer learning prac-
tices towards eventually building CombML foundation models
that can solve a wide range of scientific and engineering prob-
lems.
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1.2. Requirements and pathways towards massive deep learning datasets in
combml

We now discuss a set of requirements for a large and diverse
CombML dataset, which we note are different to the requirements of
centralized high-fidelity databases [18]. These requirements supple-
ment scientific data management principles such as FAIR [19]:

+ Massive and diverse: Large and diverse datasets are crucial
for ensuring good accuracy and generalizability in state-of-the-
art ML algorithms [2]. For example, super-resolution models [20]
in computer vision, which have also been applied towards turbu-
lence modeling [12], are typically trained with ©(10%) samples [7]
of high-resolution images with great diversity. To establish a
similar diverse dataset in CombML, we propose a living dataset
that continuously accumulates towards at least a total of 9(10%)
individual snapshots from (9(10%) different configurations. Since
this volume of data cannot be easily generated from any in-
dividual researcher, a community-involved approach should be
considered.

Accessible and consolidated: Significant resources will be re-
quired to store and share (10%) snapshots of high-dimensional
data without careful treatment. While services, such as Globus
[21], currently enable researchers to share data directly from
computing and storage facilities, the private permissions required
for this service can hinder accessibility. Public accessibility to
scientific data is typically achieved by building a centralized
database, such as with the Johns Hopkins Turbulence Database [6]
or the Sloan Digital Sky Survey [22]. These centralized scientific
public datasets typically require dedicated storage infrastructure
which consists of a database cluster, web interface system, and
dedicated infrastructure for data analysis. While this approach
has lead to reliable sources of scientific data, this can incur
significant capital costs, as well as additional costs and human
labor for maintaining and updating the centralized database. An
alternate approach would be to leverage open-source and free ML
repositories such as Kaggle [23], which are currently restricted by
a 0(100) GB limit that may not be sufficient for high-fidelity data,
as a single snapshot of petascale DNS data can often exceed this
limit.

Sufficient data quality: The availability of good quality data
is without a doubt important to data-driven methods. How-
ever, we must emphasize that this dataset must only be suffi-
ciently good for training big supervised ML algorithms. A recent
study [24] demonstrated that ImageNet and other popular bench-
mark datasets contain up to 10% label error. Despite these errors
in training data, ML continues to transform numerous engineering
and scientific endeavors. This is because modern deep learning
algorithms are inherently robust to noisy data [25]. In fact, it is
well-known that introducing small amounts of noise to a training
set can be beneficial for improving the generalization of neural
networks [26], and is a common form of data augmentation [27].
This has significant implications towards the use of compression
and dimensionality reduction algorithms for mitigating storage
constraints. However, since some combustion applications in-
volve safety-critical conditions [1], we note that the use of noisy
data with ML under these conditions should be treated with
caution and thoroughly investigated prior to deployment.

1.3. Dimensionality reduction and lossy compression

Combustion modeling has embraced dimensionality reduction meth-
ods for chemical and manifold reduction, resulting in compact models
in turbulent reacting flows with an acceptable amount of error. In-
terpretable data-driven dimensionality techniques such as principal
component analysis (PCA) [28] have also been employed to identify
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Step 5:
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Fig. 1. BLASTNet: A community-involved pathway to big combustion data at https://blastnet.github.io/.

optimal low-dimensional manifolds that can be transported through
conservation equations [29,30]. A related practice involves projecting
large dimensional state spaces onto low-order manifolds by leveraging
well-understood physical principles behind representative flame con-
figurations. This approach has resulted in the formulation of models
such as the Burke-Schumann solution [31], the flame-prolongation in
intrinsic lower-dimensional manifold (FPI) [32], the flamelet-generated
manifold (FGM) method [33], and the flamelet/progress variable (FPV)
method [34,35].

Since big ML algorithms are robust to noisy data [25], dimension-
ality reduction algorithms can be applied towards high-fidelity data
that exceed size restrictions before storage in public ML repositories.
However, errors obtained during PCA reduction can be difficult to
control, which may result in unpredictable behavior if present in an
ML dataset. More complex dimensionality reduction methods such as
autoencoders [36] have been shown to be more effective (but less
interpretable) than PCA at compressing data while avoiding significant
information loss [37,38], but can still be difficult to control and are
computationally expensive.

Recently, lossy compression algorithms [39] have gained popu-
larity in applications with high-fidelity data due to increasing stor-
age and I/0 bottlenecks as computational capabilities and high-speed
measurements outgrow disk capabilities. Similar to dimensional re-
duction techniques, these algorithms reduce the size of data, while
introducing small errors to the compressed data. This is in contrast to
lossless compression algorithms, which preserve all information during
compression. As shown in Table 1, lossy compression algorithms can
achieve significantly higher compression ratios (defined as the ratio
between the sizes of original data and compressed data, respectively)
than lossless compression. In addition, many of these lossy compression
methods have been tailored towards compressing high-fidelity scientific
data at tractable computational costs and include error-boundedness,
which enable users to determine and control the desired error/fidelity
of the compressed data. Thus, these methods can be employed towards
guaranteeing a level of desired quality when compressing ML training
data.

Even an O(10)-fold compression could turn the storage of high-
fidelity combustion simulation data into a bearable task. For instance, a
ten-fold compression on petascale DNS data (with 200 GB per snapshot)
would result in a few compressed snapshots that can be readily shared
on public ML repositories such as Kaggle [23]. This process could be
repeated at modest effort for multiple DNS configurations, with links
to each distributed dataset curated and hosted on a single community-
maintained webpage. Employing such an approach, which we detail
in Section 1.4, would eliminate the time and labor required to build
and maintain a centralized database by making use of the open-source
nature of the broader ML community.

Table 1

Comparison of compression ratios achieved by compression algorithms
on scientific datasets.

Source: Adapted from [39].

Compressor Type Compression Ratio
Deduplication [40] Lossless 15~ 3

gzip [41] Lossless 15~ 2

FPC [42] Lossless 1.2 ~ 0(10)
ISABELA [43] Lossy 2.1 ~ ©0(100)

SZ2 [44] Lossy 3 ~ O(100)

ZFP [45] Lossy 3 ~ 0(100)
TTHRESH [46] Lossy 5.1 ~ O(100)

1.4. BLASTNet: A big data framework for the combustion community

In this work, we propose an affordable weakly centralized frame-
work that combines the use of lossy compression algorithms with public
open-source data repositories and community involvement for sharing
massive and diverse deep learning training data for combustion. In
particular, this framework is targeted towards improving the diversity
of accessible scientific training data for ML, and thus serves a distinct
purpose when compared to existing high-fidelity databases [6].

Fig. 1 summarizes our proposed framework, Bearable Large Acces-
sible Scientific Training Network-of-Datasets (BLASTNet). BLASTNet is
aimed at providing accessibility to raw simulation and measurement
data (from a diverse range of configurations), which can be employed
for solving a wide range of deep learning problems. This data is shared
through Kaggle [23], which has an interface suitable for scientific clus-
ters, provides the datasets with a unique Kaggle ID, and also provides
the ability to register digital-object-identifiers (DOI) for each dataset.
Since the data is uploaded primarily using Kaggle, any modifications
are tracked via their history and version control system. In cases where
a single sample of data exceeds storage limits in Kaggle (currently
restricted to ©(100) GB), this data is compressed at a desired level of
error, with an error-bounded lossy compression algorithm. Here, we
recommend the use of a consistent compression algorithm, SZ2 [44],
so that all lossy compressed datasets can be shared in a consistent data
format.

The link to, description of, and all other metadata (boundary con-
ditions, initial conditions, fuel composition, DOI, numerics, chemical
and transport properties, grid, and timesteps) from the dataset can
then be shared onto a community-hosted webpage [47], at https://
blastnet.github.io/, which curates all existing distributed ML datasets
and provides a centralized search interface to enable convenient public
access. An example the metadata format is provided in B.
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The community-hosted webpage also provides tutorials for com-
pressing, decompressing, sharing, and accessing the lossy data. BLAST-
Net also sets standards (further detailed in Section 5), and screens
the data to ensure that these standards are met. Note that all data
and metadata contributed to BLASTNet will adhere to FAIR princi-
ples [19] for scientific data management, as further detailed in C. A
community discussion forum is also hosted on BLASTNet in order to
receive continuous feedback from users and to provide a platform for
additional support to users. Importantly, to ensure that fair attribution
is provided in this open-source project, a version update will be applied
to BLASTNet each time a new contribution is provided by the research
community to include each individual contributor into BLASTNet’s list
of authors, which is a common practice in open-source software [48].

1.5. Objectives

The objectives of this work can thus be summarized as follows:

To advocate the benefits of a massive, diverse, and distributed
CombML datasets for deep learning.

To introduce a platform, at https://blastnet.github.io/ [47], for a
community-involved network-of-datasets (BLASTNet).

To demonstrate lossy compression as an affordable and expedited
pathway for storing and sharing state-of-the-art high-fidelity data.
To quantify the compression gained from lossy algorithms and
to demonstrate the robustness and limitations of deep learning
algorithms to the resulting lossy errors.

To call on the research community to contribute data to BLAST-
Net.

We note that a key component of BLASTNet operates under the
assumption that deep learning methods are robust to controllable
amounts of noise introduced during lossy compression. To investigate
the validity of this assumption within combustion, we apply a lossy
compression algorithm (SZ2 [44]) to DNS data of a turbulent lifted
hydrogen jet flame in heated co-flow [49], and study the effects of
lossy data on training deep learning models in two completely different
ML problems, namely combustion regime classification and filtered
reaction rate regression. The investigated DNS dataset is described
further in Section 2, while the chosen lossy compression algorithm and
deep learning architecture are detailed in Section 3. Results from this
investigation are presented in Section 4, before concluding in Section 5.

2. DNS dataset

A three-dimensional DNS dataset from a previous study [49] of a
turbulent lifted hydrogen jet flame in heated co-flow air is used to
demonstrate the robustness of deep learning models to lossy errors.
Fig. 2 shows a schematic of the DNS configuration. A diluted fuel
mixture (65% H, and 35% N, by volume) is issued from the central
slot at an inlet temperature of 400 K. This central jet is surrounded on
either side by co-flowing heated air streams with an inlet temperature
of 850 K, at atmospheric pressure. The mean inlet axial velocity U,, is
given by:

Uje—U, H/2 —H/2
U,.n=UC++<tanh<%)—tanh(%)>, ¢))

with mean inlet jet velocity U, = 240 ms~!, mean inlet co-flow
velocity U, = 2 ms~!, and jet width at the inlet H = 2 mm.
Velocity fluctuations, obtained by generating an auxiliary homoge-
neous isotropic turbulence field, are fed from the inlet using Taylor’s
hypothesis.

This 2000 x 1600 x 400 computational domain is 15H x 20H
X 3H in the streamwise x-, transverse y-, and spanwise z-directions,
respectively, resulting in a total of 1.28 billion cells. A uniform grid
size of 15 pm is placed in x- and z-directions, while the y-directional
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Fig. 2. H,-air direct numerical simulation data [49] used in this study.

Table 2
Classification labels generated with flame index FI, progress variable C,
and mixture fraction Z.

Label Definition

Premixed Flame (C > 0.01) and (FI > 0) for all Z
Non-premixed Flame (C >0.01) and (FI < 0) for all Z
Air (C <£0.01) and (Z <0.01)
Fuel (C £0.01) and (Z > 0.90)
Fuel-air Mixture (C <£0.01) and (0.01 < Z < 0.90)

grid is algebraically stretched outside the flame and shear zones. Im-
proved non-reflecting boundary conditions [50,51] are adopted in the
x- and y-directions and periodic boundary conditions are applied in the
z-direction.

The Sandia DNS code, S3D [52] was employed for solving the com-
pressible Navier-Stokes, species continuity, and total energy equations.
The employed detailed H,-air chemical mechanism composed of nine
species (H,, O,, H,0, O, H, OH, HO,, H,0,, and N,) and 21 elementary
reaction steps, was developed by Li et al. [18]. In the present study, a
1200 x 300 x 200 sub-region of the DNS field (i.e., a left half branch
of the lifted jet flame) is sampled from a single 124 GB DNS snapshot,
in order to reduce the computational cost during training and analysis
while maintaining the fidelity of the flame structure. The size of the
data subvolume was determined by ensuring that the overall structure
of the partially premixed flame (i.e., lean/rich premixed flame and the
trailing diffusion flame) and the upstream fuel/air mixture profiles can
be clearly observed within the sub-volume throughout the simulation.
This subvolume was also selected such that class imbalance [53] issues
(where the proportion of one class greatly exceeds another) in the
classification problems do not affect ML predictions. We employ this
72M-cell subvolume to demonstrate the robustness of deep learning
models to noise from lossy compression algorithms in both classifica-
tion and regression problems, as specified in Section 2.1 and Eq. (3),
respectively.

2.1. Classification dataset

Within CombML, classification can be useful for optimizing nu-
merical computations [54], detecting catastrophic events [55], and
identifying combustion regimes [56]. As detailed in Table 2, we gener-
ate five classes of labels for the present classification problem, with the
use of the progress variable C = Yy o, mixture fraction Z as defined
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Classification Output
256%x256%x3x5
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D Transpose Conv. Layer

[C] Leaky ReLU Activation
[ Output Activation
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Regression Input
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I
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Bottleneck
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Regression Output
32x32x3x1

Fig. 3. Present 3-D CNN architecture. The number of filters in each layer N is represented in terms of the number of input channels N}

by Bilger [57], and flame index FI [58], which is defined by:
VYy, - VYo,

Fl= — 2% 2 2
IVYy, Il - VYo, |l

These five labels were chosen (i) to account for a well-balanced pro-
portion of classes, (ii) to investigate the effects of lossy compression
on fine thresholds, and (iii) to investigate the effects of the gradient
operator in Eq. (2) in magnifying lossy errors. We note that these
classes have been defined for an illustrational purpose, and that more
refined classes should be considered in contexts related to scientific
discovery, if needed. For each label, we extract four flow features
{Z,C.Yy,. Yo, }, and then divide the data into 268 sub-volumes, each
with 256 x 256 x 3 cells. Note that three cells in the z-axis is suf-
ficient for preserving spatial information in these samples, since this
configuration is homogeneous in the spanwise direction.

2.2. Regression dataset

Within CombML, regression is particularly popular for construct-
ing turbulence closure [59], modeling thermodynamics and chem-
istry [60], and parameterizing combustion manifolds [30]. Here, we
generate our regression label by filtering and down-sampling the DNS
data to evaluate the Favre-filtered progress variable reaction rate @:

B = % / poPNS()G(x — y. Ap) dy, (3a)
14
and
32
—6(x — y)?
G-yt = 5] exp| 2EZI] (3b)
7L'AF AF

where = denotes a filtered quantity, = is a Favre-filtered quantity,
G is a Gaussian filter, and 4, = 84 is the filter width, which is
prescribed to be eight times larger than the DNS cell width A. This
filter width corresponds to three cells (in a corresponding LES) for
sufficiently resolving a laminar flame thickness of 0.3 mm, which is
evaluated through a stoichiometric 1D premixed flame calculation.
The quantity @ from turbulence-chemistry interaction is of interest
within CombML, as shown in other studies [61,62], and is a suitable
quantity to test the robustness of ML models to lossy errors, due to the
presence of the exponential operator in the Arrhenius term, which can
significantly magnify lossy errors. For each label, we extract two flow
features {Z,C} from this dataset, and then divide the data into 177

sub-volumes (each with 32 x 32 x 3 cells) that encompass the flame
region.

3. Methods
3.1. Deep learning

Fig. 3 shows the 3-D convolutional neural network (CNN) architec-
ture used in both classification and regression problems. CNNs use a
small moving window, known as a filter, that performs a mathematical
operation (typically convolution and pooling [1]) on a neighborhood of
pixels. When learning from spatial data, CNNs can be easier to train and
achieve higher prediction accuracies, compared to other ML algorithms,
due to the preservation of spatial information through the use of the
CNN filter. In this work, we employ a deep learning architecture based
on the convolutional autoencoder architecture by Glaws et al. [63],
with the input channel N ;7 of the model modified to suit the number
of features in the present classification (N j;’ = 4) and regression
(N ’F" = 2) datasets and the CNN filter width reduced to three, which
is a popular choice for CNN architectures [64]. A key component of
this architecture is its autoencoder structure. Autoencoder networks
can be thought of as a non-linear PCA [36], where raw features are
automatically processed by the encoder into an embedded form which
can then be forward-propagated by the decoder to generate complex
predictions. The present network contains 93 layers and approximately
1M trainable parameters, with weights initialized via Xavier initial-
ization [65], and contains 12 residual blocks [5] near the input and
output, for improving training and avoiding vanishing gradients during
back-propagation.

For the classification problem, a softmax output activation with five
filters N ;’” =5 (for the five classes) is used together with a categorical
cross-entropy loss function, while a linear output activation with a
single filter N ;"' = 1 is used for the regression problem with a mean-
absolute-error (MAE) loss function. Train and validation procedures are
further detailed in Appendix A.

3.2. Lossy compression

In this work, we employ the SZ2 compressor [44], which com-
bines curve-fitting, the Lorenzo predictor, and data quantization for
compressing scientific data. In principle, SZ2 (i) partitions field vari-
ables into clusters, (ii) iteratively searches for regression functions
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that can approximate each cluster with a guaranteed error-bound, and
(iii) stores the quantized regression coefficients of the function and
indices of the field variables for recomputing the original data during
decompression. Data can be compressed effectively since the quantized
coefficients and indices are much smaller than the original variables.
Compression and decompression of the twelve quantities (temperature,
density, pressure, as well as mass fractions of H,, O,, H,0, O, H, OH,
HO,, H,0,, and N,) in the thermo-chemical state-space for the present
72M subvolume requires a total of approximately 35 s wall-clock-time
on a single Intel Xeon CPU. We note that SZ2 has been reported to
be at least 2-times faster than the other lossy compressors listed in
Table 1 [44,46].

Thus, SZ2 meets the criteria described in Section 1.3 for compress-
ing high-fidelity data for a large public training database: (i) capable
of high compression ratios, (ii) fast, and (iii) allows for bounded error
control. While a global error bound is typically used for controlling
errors in other compressors [43,46], SZ2 allows for control via both
global error bound, which guarantees that the lossy error in all cells
do not exceed a single user-defined value, as well as the point-wise
relative error bound [66] by, which guarantees that the lossy error in
each cell does not exceed a user-defined percentage of the compressed
value. Fig. 4 demonstrates the range of lossy data obtained via point-
wise relative error control and a corresponding global relative error
control, on a curve obtained from the maximum conditional progress
variable max(C|Z). The use of point-wise error control is seen to ensure
that values near zero are preserved, with positive values guaranteed
to stay positive after lossy compression. Point-wise error control also
preserves steep gradients more effectively than global error control
between Z = 0 and Z = 0.3. Both these properties are important for
preserving the fidelity of steep gradients and small values of chemical
species seen commonly within combustion.

3.3. Evaluation metrics

For the results discussed in Section 4, we employ several statistical
metrics of accuracy to evaluate the effects of lossy compression on data
fidelity, and to assess the predictive accuracy of deep learning models.
We quantify the quality of lossy compressed data through two popular
image quality metrics, i.e., the structural similarity index measure [67]
(SSIM) and the peak-signal-to-noise-ratio [68] (PSNR). In this work,
SSIM is evaluated by passing a sliding window @ (4, = 64) across
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Fig. 5. SZ2 compression ratio of different scalar flowfields at varying point-wise error
bounds b,. Species quantities are expressed in mass fractions.

a scalar from the uncompressed data ¢ and a scalar from the lossy
compressed data y, and volume-averaging their statistical quantities:

SSIM(&, w) = (I($, w)s(, w)r(d, w)),

2pgpy, + €y 2040, +c; < Opy 63 >
M$+M3,+C1 63)+63,+cl 00y tC3

(4a)
where mean y, and variance oé of the sliding window are:
1
w= 5= [ #ae (4b)
2 1 Y
Oy = Ng /9(05 He) dQ, (40)

while / measures the similarity of u,,, s measures the similarity of
02, , r measures correlation of the {¢,y}, and constants c, , 3, ensure
numerical stability.

PSNR is related to mean-squared-error (MSE):

max(¢, y)* )
MSE(¢,w) /

Note that for both metrics, higher values are indicative of higher post-
compression quality, with SSIM bounded between —1 and 1, while the
highest possible value for PSNR is restricted by the maximum value of
a data type, i.e., 48 dB for 8-bit images.

For the classification problem, we evaluate the class accuracy score
via a one-versus-all approach, i.e., the number of sample points that
have been predicted correctly for a given class divided by the total
number of sample points. In the regression problem, SSIM is employed
to compare the similarity between filtered progress variable reaction
rates from the DNS and from the deep learning models. The normalized
mean-squared-error for N number of cells is also employed to measure
the difference between the ground truth ¢ and model predictions y:

SN (@ —w)?
T

PSNR(¢, w) = —101log;, ( 6))

Norm. MSE(¢, w) = (6)

4. Results
4.1. Effects of lossy compression on data
This section describes the effects of lossy compression on the train-

ing data, while Section 4.2 discusses the effects of training deep learn-
ing models with this lossy data.
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Fig. 6. Mixture fraction Z (left), temperature T (center), and OH mass fraction Yoy (right) from the train set at different levels of maximum point-wise error bound b, specified

during compression. Quality metrics such as PSNR and SSIM are included in-panel.

We first compress flowfields required to solve both regression and
classification problems with SZ2. Fig. 5 demonstrates that the total
compression ratio, from 1% to 50% point-wise error bound b,, ranges
from 7- to 20-fold compression. Even if we consider only the lowest
compression ratio seen in compressing the H,O, mass fraction, a four-
fold compression of the 124 GB DNS solution file, would enable at least
three snapshots of this data to be shared as a single dataset on Kaggle.
Data compression could be repeated on other flow configurations of
a similar scale, and shared via the framework presented in Fig. 1 for
building a diverse network-of-datasets. Fig. 5 also shows that greater
compression ratios are seen in state variables, such as density p and
temperature 7, compared to mixture fraction Z and chemical species.
We note that SZ2 has consistently resulted in large compression ratios
across numerous scientific configurations in weather modeling, climate
modeling, and cosmology modeling [39,66]. Thus, similarly large com-
pression ratios should be expected for other potential configurations for
BLASTNet.

Visualization of the uncompressed and lossy-compressed flowfields
in Fig. 6 provides better insight into the different compression ratios
exhibited by different quantities. In mixture fraction (left), temperature
T (center), and OH mass fraction Yoy (right), PSNR is shown to
decrease with increasing point-wise error bound b, when compared
to the uncompressed flowfields in Fig. 6a. SSIM also decreases for Z
and T with increasing b,, but is preserved for Yoy. At large settings
of b,, distortions first appear in regions with large magnitudes and
small gradients, as is expected from the point-wise error control, as
discussed with Fig. 4. As such, large field distortions are first clearly
observable in temperature and mixture fraction Z at b, = 20% and b, =
40% in Figs. 6b and 6c, respectively, with no temperature fluctuations
visible at b, = 40% in Fig. 6¢. In these cases, compression should be
performed with smaller values of b, to preserve flow structure. Note
that for lossy compressed Yoy, PSNR decreases with increasing b,,
while SSIM remains constant. This is due to the preservation of small
magnitudes outside the small regions of the flame, which preserve the
statistical quantities used to evaluate SSIM in Eq. (4). These results also
demonstrate that the point-wise error bound is suited for preserving
the large gradients and small magnitudes as seen in Z at b, = 10%
in Fig. 6b, and in all b, for the OH mass fraction (Fig. 6a, b, c). This
property is useful for preserving the flowfields of many scalar quantities
encountered in reacting flow configurations.

4.1.1. Classification

When developing an ML dataset, one can either (i) identify and
target a specific supervised learning problem or (ii) share raw data that
can then be processed for a target ML problem just before training.

Non-
Premixed premixed Fucl-air
Flame Mixture

Flame Air Fuel

0 3 6 9 12 15

(c) b, = 40%.

Fig. 7. Classification labels generated from lossy data at different levels of point-wise
error bounds b,.

Thus, in the present classification problem, we investigate two corre-
sponding scenarios: (i) training with lossy features and clean labels, and
(ii) training with lossy features and post-processed labels generated from
lossy data.

Fig. 7 compares the labels used to train the deep learning models
at different levels of point-wise error bound b,, with Fig. 7a showing
original uncompressed labels. Significant noise is seen at b, = 10%
(Fig. 7b), especially in the premixed and non-premixed flame regions,
with a 9.3% total label error introduced to the data. This noise is
present because lossy errors are magnified by the cell width 4 when
evaluating scalar gradients used to determine the flame index (Eq. (2)).
We demonstrate this on a central-differencing scheme:

K +€,) - X +€)

¢ -
X +e (X)) = 72

(7a)
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= . 7b
24 + 24 (7b)
Note that in this text, we use the superscript -* to denote lossy terms.
In the worst case, where lossy errors el_'/:l =b,X;;, and ef_l =-b,X;_;:
Xpg1 + X))
FX +ef (X)) = f(X)+ b,,%, (70)
which could be significantly larger than:
(X1 — X;_p)
FOO+E(f) = (X + b, (7d)

Fig. 7b shows that the fuel labels also become distorted at b, = 40%
as the lossy errors obfuscate the threshold (Z < 0.01) in generating
the labels, as discussed with Table 2, resulting in a total label error of
nearly 20%.

4.1.2. Regression

We consider the same two scenarios from Section 4.1.1: (i) targeting
a specific supervised learning problem or (ii) generating labels from
shared lossy simulation data. Specifically, we explore scenarios where
(i) pre-processed filtered progress variable reaction rate Z‘)é(T,p, Y
are compressed and shared, and where (ii) post-processed filtered
progress variable reaction rate &(T?, p* ,ka ) are generated directly
from shared lossy data. The pre-processed label Z)Z is generated by
(i) evaluating @25 through inputting the thermo-chemical vector
[T, p, Yk]T from each cell into the chemical mechanism, (ii) applying
Favre-filtering (Eq. (3)) to form E)g NS, and (iii) applying lossy compres-
sion to form Z)IC. In contrast, the post-processed label &c(T7, p?, Y{) is

generated by (i) applying lossy compression on thermo-chemical vector
to form [T7, p’, ka 1T, (i) evaluating a‘)c(Tf 00, ka ) using the chemical
mechanism, and (iii) applying Favre-filtering to form @c(T?, p’, Yk‘) ).

Fig. 8 compares scatter plots of labels (filtered progress variable
reaction rate @ normalized by aN')gmax = 10933 s71) used for training
chmm vs. true labels (7)3 NS for different cases of lossy labels. Fig. 8a, b, ¢
shows that in cases with pre-processed labels E)é, the lossy labels never
exceeds the point-wise error bound b, = 10%, b, = 20%, and b, = 40%,
respectively. In contrast, Fig. 8d, e, f shows that the post-processed
labels g)C(Tf,pf,Y,f) can exceed b, = 2%, b, = 4%, and b, = 8%,
respectively. These errors can even result in unphysical labels, as seen
in Fig. 8e, f, where negative values of @ are observed even at relatively
small b, = 4%, and b, = 8%. This is because exponential operators in
the Arrhenius term can magnify the lossy errors, which is also seen with
gradient operators in Eq. (7c). These results highlight the importance of
choosing a sufficiently low b, during lossy compression, as significant
errors could form in labels generated from lossy data. In addition, the
large errors that can be seen in the post-processed quantities indicate
that lossy data in BLASTNet should not be used for conventional DNS
analysis.

4.2. Deep learning predictions

We now explore the effects of lossy data on deep learning. In
general, validation and test data do not necessarily match the dis-
tribution of the training data, and are usually sampled to represent
data encountered after deployment. For instance, when building a
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Fig. 9. Class accuracy score at different levels of maximum point-wise error specified during compression.
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Fig. 10. Visualization of ground truth and predictions from ML models in the classification problem.

data-driven turbulence model in a numerical solver, training data can
be extracted from as many different sources as possible to improve
generalizability, while validation and test data should match the flow
conditions simulated by in the numerical solver [1]. Thus, in the big
data framework proposed in Fig. 1, we envision a scenario where large
quantities of lossy compressed training data can be easily obtained from
public repositories, with small quantities of clean test and validation
data sampled personally by a user. As such, for the classification
and regression problems in Section 4.2.1 and Section 4.2.2, only the
training data are lossy-compressed, while validation and test sets are
uncompressed.

4.2.1. Classification

Fig. 9(a) compares class accuracy scores for different levels of point-
wise error bounds b, for ML models trained on lossy features and clean
labels. A mean class accuracy score of 87% is seen in the baseline
case of b, = 0%, which is typical in other classification/segmentation
problems [54,69]. The mean accuracy scores are robust up to b, =
20%, corresponding to a 13-fold compression. At b, > 40%, a high
mean accuracy (84%) is still observed, which is in agreement with the
well-known observation [70] that ML algorithms are reasonably robust
to feature noise. Note that non-monotonic behavior can be observed
in the accuracy for the premixed flame class. This behavior is also
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labels.

observed in another study [71] investigating the effects of increasing
noise in labels for classification problems involving numerous image
and sequential datasets. This behavior is expected in ML algorithms
that rely on stochastic first-order gradient descent optimization when
training deep learning algorithms.

Fig. 9(b) compares class accuracy scores for different b,, when
training with both lossy features and (post-processed) labels generated
from lossy data. The mean accuracy scores are robust to errors up to
only b, = 10%, which still corresponds to a 11-fold compression in the
original data. At b, > 20%, class accuracy for fuel begins to decrease
towards 0. This is caused by the distorted fuel labels shown in Fig. 7c.
Nevertheless, the deep learning model demonstrates reasonably robust
behavior in the other classes, especially in the flame regions, up until
b, = 40%.

Fig. 10 visualizes predictions from the deep learning model trained
on lossy features and post-processed labels. Fig. 10b shows that the
model predictions at b, = 0% are in reasonable agreement with the
ground truth labels in Fig. 10a. A slightly higher class accuracy of
89% is seen when training with clean labels and lossy features at
b, = 10%, as shown in Fig. 10c. Increase in accuracy is commonly
observed in ML models with the introduction of small amounts of noise
during data-augmentation [27], which is well-known to improve neural
network models [26]. However, Fig. 10d shows that non-premixed
flame samples are misclassified as premixed flame near the flame
boundary with air when the ML model is trained with lossy labels
and lossy features at b, = 10%. This is likely caused by the excessive
label noise between the premixed and non-premixed flame regions,
as seen in Fig. 7b. Similarly, misclassification is seen in the air and
premixed flame labels in Fig. 10e, with feature noise at b, = 40%. The
aforementioned failure in classifying fuel is clearly observed when the
ML model is trained with lossy labels and lossy features at b, = 40%
(Fig. 10f). Nevertheless, coherent classification is still observed in the
flame regions at b, = 40%, despite the high label noise seen in Fig. 7c.

4.2.2. Regression

Fig. 11(a) compares regression accuracy and error metrics, namely
SSIM and the normalized MSE, respectively, for different levels of point-
wise error bounds b, for ML models trained on lossy features and lossy
pre-processed labels Z)Z. For b, = 0%, a normalized MSE of 22% is
similar to results from another study [62]. These values and the high
SSIM =~ 0.92 are reasonably consistent up to b, = 40%, corresponding
to a 20-fold compression.
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true labels Bg’vs for different cases of lossy labels.

Fig. 11(b) compares SSIM and normalized MSE when training with
both lossy features and post-processed labels o (T, p?, ka ) generated
from lossy data, as a function of b,. SSIM and normalized MSE are
robust to errors up to only b, = 4%, which still corresponds to a 10-fold
compression. After b, > 4%, SSIM begins to decrease while normalized
MSE increases significantly due to the magnification of errors during
label generation, as shown in Fig. 8.

Fig. 12 visualizes the predictions (normalized by g)ngx 10933
s71) from the ML model trained on lossy features and pbst—processed
labels Z)C(Tf N ,Ylf ), along with the filtered DNS. Fig. 12b, ¢ shows
that the model predictions at b, = 0% and b, = 4% are in reasonable
agreement with the ground truth labels in Fig. 12a. Over-prediction and
under-prediction of @ is observed in Fig. 12d, where b, = 8%.

Fig. 13 compares normalized predictions of filtered progress vari-
able reaction rate (7)’3 “! from the ML model (trained with post-processed

labels) vs. normalized true labels Z)IC)NS for different cases of lossy
labels. The distribution of scatter points shown in Fig. 13a for b, =
0% (uncompressed data) is qualitatively similar to distributions from
another a priori ML study [62] involving @c. The high SSIM = 0.92
indicates good correlation between the ML predictions and the true
labels. Fig. 13b shows a narrower distribution of scatter points and
higher SSIM = 0.93 for b, = 4%. Here, small amounts of noise in the
training data is seen to improve the regression model, which is also
observed in Fig. 10c for the classification problem. This behavior is also
observed in a recent regression study involving turbulent flows [72].
However, Fig. 13c shows that for b, = 8%, significant errors (such as
the negative predictions for Z)'g ed) are observed, which also lead to a
large decrease in SSIM = 0.76.

Fig. 14 compares mean conditional filtered progress variable reac-
tion rate (@|Z) (normalized by (&¢|Z),. = 1122 s71) from the ML
model (trained with post-processed labels) with ground truth labels
from the filtered DNS. The misprediction observed at b, = 8% in Fig. 8d
can also be observed here, where a two-fold over-prediction in (@|Z)
occurs at Z = 0.24. <5C|Z ) at b, = 4% is seen to be in better agreement
with the filtered DNS than at b, = 2% and b, = 0%. Introducing small
amounts of noise is also seen to improve the classification model, as
discussed with Fig. 13b and Fig. 10c.

We note that while the addition of noise can improve training (as
commonly done via data augmentation [27]), an excessive amount of
noise can lead to poor predictions as shown by b, = 8% (Fig. 12¢ and
Fig. 14), and thus caution should be exercised when dealing with noisy
data. Hence, for the purposes of compressing excessively large data files
for BLASTNet, we recommend a soft-constraint of b, =1% (seven-fold
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Fig. 14. Comparison of mean conditional filtered progress variable <c~bc|2 ) from the
filtered DNS and predictions from the ML model, trained with post-processed labels
Gc(T’.p’ YD), (@c|Z) is normalized by (G| Z),, = 1122 s7.

compression), unless necessary to achieve higher compression ratio in
very large datasets. Any further augmentation with noise should be
performed after downloading and during training at a user’s discretion.
Nevertheless, these results demonstrate that controlled amounts of
noise does not affect deep learning models, and in some cases can even
be beneficial.

5. Conclusions

In this paper, we propose BLASTNet, a realistic framework that
combines (i) community involvement, (ii) public data repositories,
and (iii) lossy compression algorithms for accessing the wealth of
combustion data that already exists in the form of high-fidelity simula-
tions and detailed measurements. Alongside this, we introduce a web-
platform, at https://blastnet.github.io/, for consolidating the proposed
network-of-datasets.

Given the potential limitations in public storage capacity, a key
component of this framework involves the use of lossy compression
algorithms for enabling access to petascale simulation data and large
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experimental measurements. Thus, we evaluate effects of lossy com-
pression algorithms on data quality and deep learning performance on
a H,-air lifted flame DNS. To this end, we train CNN models with labels
and features, extracted from lossy DNS data in two completely different
regression and classification problems.

In scientific supervised learning, two broad categories of datasets
can be encountered: (i) a dataset targeted at a specific problem,
i.e., with clean/pre-processed labels, and (ii) raw simulation data or
measurements, i.e., with lossy/post-processed labels. For the classifi-
cation problem, we trained ML models to predict 5 different classes.
In the clean label scenario, the classification model is robust to lossy
errors in the features up to a point-wise error bound of b, = 20%, which
corresponds to a 13-fold compression. In the case of lossy labels and
features, the CNN is robust up to b, = 10%, corresponding to a 11-fold
compression ratio.

For the regression problem, we trained the ML models to predict the
Favre-filtered progress variable reaction rate @,. In the pre-processed
scenario, the performance of the regression model is unhindered even at
b, = 40%. Due to the magnification of the lossy errors by Arrhenius term
calculations, large lossy errors are seen in the post-processed training
labels even at b, = 4%. Nevertheless, the regression model still predicts
. accurately, and the presence of small amounts of noise is even seen
to improve the performance of the deep learning model. However,
model predictive accuracy drops sharply at b, > 4%. In both regression
and classification problems, our results demonstrate that deep learning
models applied to combustion can be robust to small amounts of noise.

We now summarize the findings from all sections of this paper
towards recommendations for standards in BLASTNet. Based on the
requirements for a useful training dataset listed in Section 1.2, we
envision DNS and LES data, covering (9(10?) different configurations
with a total of 9(10°) different snapshots for the first iteration of BLAST-
Net, with later versions considering experimental data. Since this work
demonstrates that deep learning models can train on labels that are
post-processed from lossy data, the flowfield in these datasets should
at least contain [p,u,T,p, Yk]T, with additional information required
for evaluating thermodynamic and transport properties provided to
BLASTNet as metadata (in standardized Chemkin or Cantera formats),
so users can recreate any labels required for training in the wide range
of supervised learning problems that are of interest to combustion. For
the choice of the public repository for BLASTNet, we recommend the
use of Kaggle [23], due to the platform’s command-line interface that
can enable data access from computing clusters, and ability to provide
each data contribution a unique digital-object-identifier (DOI),

We recommend the use of a consistent lossy compressor (SZ2 [44])
to allow for a consistent data format that would expedite the con-
struction of a data pipeline during training. Since caution should be
exercised as the performance of deep learning algorithms are seen here
to degrade rapidly in the presence of excessive noise, lossy compression
should only be applied when necessary, which is largely applicable
to bigger DNS cases that exceed 100 GB per snapshot. While the
results from this study demonstrate the merit of introducing small
amounts of noise to the data prior to training, noise addition should
be performed under the discretion of the ML practitioner as a data
augmentation procedure [27]. In these cases, we recommend a soft-
constraint of approximately b, = 1% with SZ2 so that a few snapshots
from a petascale simulation can be stored onto Kaggle. Since the total
compression ratio observed in this study (7-fold compression) is limited
by compression of the chemical species, we expect that a 5 to 10
compression ratio would also be observed in other flame configurations
since the volumetric ratio of reacting to non-reacting gases should be
relatively similar across different simulation configurations. To ensure
that data fidelity is preserved after lossy compression, we propose that
lossy datasets should be tested with the classification and regression
tasks presented in this paper with ML prediction results compared with
an uncompressed counterpart prior to sharing.
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To help facilitate these standards and guidelines, tutorials on Kag-
gle, SZ2, and reading/writing with the recommended data format are
provided in BLASTNet. BLASTNet also curates information (boundary
conditions, initial conditions, fuel composition, chemical mechanism,
DOI) regarding individual simulation configurations, and provides a
centralized search interface that enables users to download individual
cases, along with scripts that enable batch access to all shared data.
In this web-platform, a BLASTNet discussion forum is also hosted in
order to receive community feedback and to provide user support. We
remind the readers that each BLASTNet contributor will be included
to the list-of-authors in order to cultivate a truly community-involved
big training database for combustion. Thus, we call on the combustion
community to contribute to this bearable large accessible scientific
training network-of-datasets.

Supplementary material

The web-platform for consolidating BLASTNet [47] can be found
in https://blastnet.github.io/, which also provides standards for con-
tributing data and tutorials on reading and accessing shared data. The
code and ML models used for this study can be found in https://github.
com/IThmeGroup/lossy_ml.
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Appendix A. Training and validation

In both classification and regression problems, training is performed
with the Adam [73] optimizer. In the classification problem, we employ
raw learning rates of 1E-4, 1E-5, and 1E-6 for 100, 300, and 300 epochs,
respectively, and early-stopping is employed when necessary. Prior to
training, the raw learning rates are multiplied by the square root of the
batch size. Here, the batch size is 24.

In the regression problem, we employ raw learning rates of 1E-4, 5E-
5, and 1E-5, for 300 epochs each, with batch size of 36. Training both
regression and classification models on four Tesla V100 GPUs requires
a total of approximately 4 h of wall-clock-time for each case.

Training and validation losses for selected cases are shown in
Fig. A.15. In Figs. A.15(b) and A.15(d), the converged validation
loss can be lower than the training loss, leading to higher validation
accuracy than training accuracy. This is caused by the absence of
lossy errors in the validation set, as described in Section 4. Otherwise,
training shows no sign of overfitting in Figs. A.15(a) and A.15(c)
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Appendix B. Metadata

Metadata, containing additional information of simulation configu-
rations, is stored as a JSON file and can be generated with the Python
commands shown in Listings 1 and 2, which are for global and local
metadata, respectively. Global metadata contains information on the
flow configuration (initial conditions, chemistry, numerics, etc.), while
the local metadata contains information on a specific snapshot from the
configuration.

Appendix C. FAIR principles

The datasets contributed to BLASTNet have and will adhere to the
FAIR principles [19] for scientific data management, with the specific
details as follows:

 Findable: Each dataset has been assigned a unique and persistent
Kaggle identifier. Each dataset is defined by rich metadata for
its specific configuration and snapshots as shown in B. Metadata
explicitly includes the Kaggle identifier. Both data and metadata
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are indexed and can be easily searched via both Kaggle and
BLASTNet platforms.

Accessible: Both data and metadata are retrievable via standard-
ized Kaggle APIL. The protocol is free and available at https://
github.com/Kaggle/kaggle-api. The protocol requires authentica-
tion and authorization via a Kaggle account. Metadata will remain
hosted on https://blastnet.github.io/ even when the data is no
longer available.

Interoperable: The metadata uses a formal, accessible, shared,
and broadly applicable for representation in the JSON files. In
addition, vocabulary used follows FAIR principles. Further, meta-
data are referenced to other metadata through DOI from source
publications associated with the data.

Reusable: The metadata contains richly described information on
the flow configuration (initial conditions, chemistry, numerics,
etc.). In addition, all Kaggle submissions default to a CC BY-SA
4.0 license. The metadata contains information on the source
publication associated with the data. All data and metadata are
presented in consistent little-endian single-precision binaries and
JSON files, respectively.
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metadata['global] = {

'"Nxyz": [129,129,129],
"snapshots": 98,
"wariables": ["UX_ms-1",'"UY_ms-1",'UZ_ms-1",
'P_Pa",'T_K", '"RHO_kgm-3",
"Y02", "YCH4'],
"compression": '"None",
"grid": {"x": "./grid/X_m.dat",
"y M. /grid/Y_m.dat",
"z": "./grid/Z_m.dat"},

with 2nd order ENQO",

"'solver": "CharlesX'},

'T [XK]": 300,
'P [Pa]": 101325,
'"Mixture": "CH4-02 inert branch from 1D

Isotropic Turbulence DNS",

"temporal": "3rd-order SSP-RK3 (non-stiff)
and semi-implicit ROWPLUS (stiff)",

'dataset_id": "waitongchung/inert-ch4o2-hit-dns",

"description": '"Compressible Inert CH4-02 Homogeneous

"numerics": {"spatial": "4th order central-differencing

'bc": "Periodic in x-, y-, and z-directions.",
"c": {"U": "HIT Von Karman Pao with Re_t = 80 and
integral lengthscale of 62.5E-6m",

cantera counterflow calculations.'"},
"doi": "https://doi.org/10.1016/j.combustflame.2021.111758",
"contributors": 'Wai Tong Chung and Matthias IThme",

"chem_thermo_tran": {"description": 'FRC and Mixture-Averaged Transport
with constant lewis number",
"cantera_xml": "./chem_thermo_tran/bfer.xml'}

Listing 1: Python command for generating global metadata for a BLASTNet contribution.

metadata[local] = [
{"id": 0,

"“time [s]": 6.88389e-06,
"./data/UX_ms-1_id000.dat",
"./data/UY_ms-1_id000.dat",

'"UZ_ms-1 filename": "./data/UZ_ms-1_i1d000.dat",
" P_Pa filename": "./data/P_Pa_id000.dat",
'T_K filename": "./data/T_K_id000.dat",
'"RHO_kgm-3 filename": "./data/RHO_kgm-3_i1d000.dat",
'"Y02 filename": "./data/Y02_id000.dat",
"YCH4 filename": "./data/YCH4_id000.dat'},
{"id": 1, ...},

'"UX_ms-1 filename":
'"UY_ms-1 filename":

L]

"id": 97, ...}

Listing 2: Python command for generating local metadata for a
BLASTNet contribution.
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