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A B S T R A C T

Combustion and energy conversion play critical roles in all facets of environmental and technological
applications, including the utilization of sustainable energy sources for power generation and propulsion,
the reduction of pollutant emissions from combustion, or the mitigation of harm from wildfire hazards.
Computational and mathematical tools have long been crucial in combustion research in the form of high-
fidelity simulations, dynamical-system modeling, and data analytics. With the advent of data-driven methods,
machine learning (ML) and artificial intelligence (AI) offer numerous opportunities for predictive modeling,
improving existing research methods, and extracting new knowledge from data. In this article, we discuss
recent progress on how ML and AI can impact the field of combustion and energy conversion, and discuss
the need for domain knowledge for successful ML applications in combustion. Specifically, combustion ML
learns from data extracted from large-scale simulations, high-resolution experiments, and sensors, which can
introduce challenges tied to dimensionality, interpretability, sparsity, modality, and scarcity. The collective
knowledge from these advancements equip combustion researchers and engineers with the ability to adapt to
emerging developments in ML foundation models and AI agents, which have begun to offer greater automation
across different combustion domains. To this end, we assess opportunities and challenges provided by state-
of-the-art ML foundation models, and discuss emerging areas for adapting these new technologies towards
solving pressing challenges within sustainable combustion.
1. Introduction

1.1. Motivation, objective, and outline

Combustion science and engineering has facilitated the develop-
ment of a wide range of technologies, including propulsion and energy
conversion systems, thereby significantly enhancing global standards of
living [1,2]. However, there are significant challenges ahead that re-
quire the attention of combustion researchers and engineers, especially
in overcoming increasingly pressing climate-related concerns [3,4].
Promising pathways for addressing these issues include the discov-
ery of methods for (i) synthesizing and characterizing new sustain-
able fuels [5,6], (ii) designing combustion systems that can adapt to
novel fuels [7,8], (iii) implementing advanced combustion strategies
for ameliorating greenhouse gas emissions from fossil fuel utiliza-
tion [9,10], and (iv) developing mitigation strategies for climate-related
hazards [11,12].

Each of these pathways requires expertise and effort from every
field within combustion. For example, the safe deployment of novel
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fuels requires developing experimental methods for measuring funda-
mental fuel properties and realistic combustion behavior [13,14]. These
collected measurements can also be complemented by computational
chemistry models and high-fidelity calculations, which will require
the discovery of new algorithms and the development of advanced
software engineering practices within a rapidly changing computing
landscape [15,16]. Prior to performing experiments and calculations,
significant planning is often required to design optimal target condi-
tions, especially if collecting measurements or performing simulations
is costly [17]. In addition, data processing techniques will need im-
provements to manage the increased complexity and volume of datasets
as diagnostics and numerical solvers grow in capabilities [18].

Given the laborious nature of the aforementioned scientific tasks,
combustion science and engineering can benefit immensely from in-
creased automation. Cavallotti [19] expressed a similar point for the
automation of chemical kinetics, where advances in computational
techniques, digital resources, and high-performance computing pro-
vide a path towards increased automation across different chemical
kinetics-related tasks, such as species and reaction selection, ab initio
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Fig. 1. Timeline of key milestones in ML and AI, along with related developments in combustion.
calculations, thermo-chemical/transport parameterization, rate param-
eter estimation, and validation, which now enable a greater availability
of chemical kinetics models [20–25] for adapting to shifting research
trends.

Examples of these advances include stiff numerical methods (which
were initially built for atmospheric chemistry [26]) that now auto-
matically solve differential equations through packaged software li-
braries [27]. Progress in modeling increasingly realistic fuels is partially
catalyzed by establishing community-accepted methods and resources,
as seen with the NIST webbook [28], the JANAF thermo-chemical
tables [29], and general-purpose combustion software packages, such
as the NASA equilibrium solver [30], Chemkin [31], and more recently
Cantera [32]. The availability of detailed chemical mechanisms has also
led to automated chemical optimization and reduction schemes [33]
that have been influenced by concepts within linear algebra [34,35],
graph theory [36,37], and optimization [38,39]. The integration of
these reduced chemical mechanisms, chemistry packages, and compu-
tational fluid dynamics (CFD) solvers enable simulations of fundamen-
tal and realistic combustion systems [16,40], which provide knowledge
for adapting to sustainability challenges.

Increasing computational power has also spurred the exponential
growth of highly parallelizable data-driven methods, which are often
categorized under an umbrella term: machine learning (ML). Break-
throughs of ML methods in performing human tasks have led to a
new class of general-purpose language-based foundation models [41]
that have been shown to be able to match and even outperform
human performance in an increasingly wide range of tasks including
verbal reasoning, programming, and writing [42–44]. These techno-
logical developments demonstrate promising paths towards versatile
artificial intelligence (AI) agents for automating an even wider range
of tasks within different scientific and engineering domains, as seen
with emerging studies in biology [45], material science [46], chemical
synthesis [47], and mathematics [48]. Note that within this text, we
refer to ML as the subset of data-driven methods that fall within the
typical supervised, unsupervised, and semi-supervised learning catego-
rizations [49], while AI is the use of any computational method for
performing human-like tasks [50].

As these ML and AI techniques become increasingly promising
for aiding combustion researchers and engineers in facing pressing
challenges, this article aims to:
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• Provide readers with a holistic view on the progress of ML and
AI.

• Identify how these developments in AI have and can be used to
catalyze and automate various aspects of combustion processes.

• Examine challenges and prospects of AI-based autonomous sci-
ence in combustion.

• Discuss opportunities for combustion researchers and engineers
to further integrate AI-based tools for advancing the field of
combustion in the presence of emerging needs for sustainable
energy utilization.

To this end, we provide an overview of the general progress of AI and
ML methods in Section 2. Section 3 is concerned with decomposing
the scientific process into sub-processes and tasks, and reviewing recent
developments in combustion ML that perform well in these tasks. Since
previous articles [18,51–53] have provided in-depth surveys of ML
developments within combustion fundamentals and applications, we
narrow our review in this section to discuss selected ML studies over
the past two years that have focused on aiding combustion researchers
in scientific tasks. Section 4 introduces readers to ML foundation mod-
els, the leading paradigm within AI, discusses potential directions for
integrating foundation models in combustion science and engineering,
and demonstrates capabilities and limitations of state-of-the-art ML
foundation models in automating various tasks within combustion. We
suggest potential directions for employing and furthering AI-based tools
within combustion science in Section 5, before summarizing this article
in Section 6.

2. Overview of ML and AI progress

In this section, we will review the progress in the development
of ML and AI methods in the broader scope of combustion science
and engineering. An overview of ML and AI developments is pre-
sented in Fig. 1. Supervised learning involves problems (typically
in classification and regression settings) that rely on datasets that
have been structured into inputs and target outputs through labeling.
Linear regression [54] is an early supervised learning approach, with
more expressive methods that embrace non-linear operations, such as
neural networks (NNs) [55], typically used to solve more challenging
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data-driven problems that require higher predictive accuracy. Today,
linear regression is ubiquitous in science and engineering applications,
and has contributed to several important discoveries, including the
Arrhenius equation [56]. Linear regression is also essential in obtain-
ing polynomial fits used for obtaining thermodynamics and transport
data [57].

In contrast, principal component analysis (PCA) [58] and 𝑘-means
[59] are often considered unsupervised learning techniques (typically
applied to clustering and dimensionality reduction problems), due to
their ability to discover patterns without any form of labeling. In more
recent times, dimensionality-reduction techniques have demonstrated
promise for automatic identification of low-order manifolds for op-
timizing combustion chemistry [60]. Data-driven methods involving
reinforcement learning (RL), such as Q-learning [61], autonomously
create structure without data labels by employing exploitation and
exploration schemes that are supervised by a reward function. As high-
lighted in Fig. 1, the foundations for these techniques were established
decades ago, and the interested reader is encouraged to access previous
texts [49,62] and software packages [63] that focus on fundamental ML
for further details.

Despite its long history, ML methods have seen a sudden growth
in popularity due to (i) growing accessibility of large datasets and
open-source software tools, as well as (ii) increasingly sophisticated
deep learning techniques, which typically involve multiple-layered NN
architectures that scale well with large datasets, in solving a wide range
of predictive modeling tasks. The seminal moment for this surge in
interest began within computer vision, with the publication of the Ima-
geNet dataset [64], which demonstrated the possibility of curating large
and diverse structured ML datasets from internet sources. Similar efforts
in big data for combustion have begun to gain traction, as seen with
the development of the BLASTNet dataset [65], which aims to provide
public access to high-fidelity combustion simulation data. This work
is a more recent example of the long history of data curation efforts
within the combustion community, as seen with NASA thermo-chemical
data [57], active thermo-chemical tables [66], and process information
systems for chemical kinetics [67–70]. The ImageNet dataset led to the
development of AlexNet [71], which re-ignited interest in deep learning
methods by demonstrating the superiority of GPU-accelerated NNs over
other supervised learning techniques, especially when training with
large datasets. We also note that NN-based approaches have been
explored within combustion prior to their modern popularity, as shown
with early work in chemistry tabulation [72].

Similar to how Chemkin [31] and Cantera [32] spurred the develop-
ment of increasingly sophisticated representations of combustion pro-
cesses with detailed thermo-chemical models, such as GRI Mech [73],
growing accessibility to community-established ML frameworks, such
as TensorFlow [74], PyTorch [75] and JAX [76], has spawned increas-
ingly sophisticated deep learning techniques, which culminated in the
transformer architecture [77]. This easily parallelizable architecture,
along with well-established empirical scaling relationships [78] be-
tween computing power, data size, and ML capabilities, has spurred the
development of language-based ML foundation models with increasing
model complexity that can match and outperform human performance
in text-related AI tasks (such as verbal reasoning, programming, and
writing) [41]. The popularity and versatility of ML foundation models
have recently inspired researchers across different scientific domains
to employ language-based foundation models as autonomous scientist,
such as in biology [45], material science [46], chemical synthesis [47],
and mathematical science [48]. The current frontier involves extending
foundation models beyond language through the introduction of multi-
modal capabilities, i.e., the ability of a single model to accept and
combine different modalities of inputs (such as text, image, time-series
signals, and flowfields). This summarizes the progress of ML and AI up
until the present.

To project future developments, we express ML and AI progress in
terms of world scopes (WS) [79], as shown in Fig. 2. WS1 represents
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Fig. 2. Progress in ML and AI measured as world scopes (WS) [79].

the early stages of AI development, where researchers develop new ML
methods [55,80], and discover new applications for these methods on
small and privately accessible datasets. Within combustion and related
fields, many recent developments (such as physics-informed NNs [81],
as well as ML-based turbulence [82] and chemistry [83] modeling) fall
within this scope.

Since ML models have been shown, across different fields, to scale in
predictive capabilities with increasing amounts of high-quality training
data [84], internet-scale data represents the next stage of progress, as
seen with the ImageNet dataset [64]. With the public availability of
thermo-chemical data [28,29], chemical kinetic models [21–25,73,85–
89], software packages [31,32], as well as 2D [90] and 3D [91] com-
bustion flowfields, the combustion ML research community is showing
signs of progressing towards WS2.

In more mature AI fields, different domains are starting to overlap
in research efforts in multi-modal AI (WS3), as seen with the increas-
ing intersection of language and computer vision research in recent
multi-modal foundation models [41]. This type of cross-disciplinary
research represents the next frontier in many scientific domains, where
efforts in integrating AI language models into scientific applications are
becoming increasingly popular [45–48].

WS4 covers future directions in intelligent real-world actions, where
AI systems are expected to reach human-level reasoning when interact-
ing with the physical world. Within this scope, some exploratory work
in employing RL within virtual environments [92] and specific real-
world tasks [93] have shown success. While similar control techniques
have been proposed within both virtual [94] and real-world [95]
combustion systems, many of these approaches lack the versatility,
generality, and reasoning capabilities of multi-modal foundation mod-
els [42]. As such, there are still many open questions within WS4,
which have begun to be partially addressed by integrating AI agents
(i.e., autonomous intelligent systems performing human-like tasks) with
external tools and systems [96] for interacting with the physical world
to create embodied AI agents [97].

Finally, WS5 represents fully autonomous and trustworthy AI sys-
tems [79] that can be deployed without human monitoring or inter-
vention, which has still not been demonstrated in any capacity. If ML
and AI progresses to this stage, the existence of a fully autonomous
AI agent could result in the automation of various experimental and
computational procedures required for adapting to potential challenges
being addressed by combustion researchers.
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Fig. 3. Stages in scientific process of knowledge discovery, along with tasks, resources and tools (including ML methods and foundation models).
3. ML in combustion science and engineering

In the previous section, we provided a holistic overview of ML
and AI techniques, along with factors that have led to their increasing
maturity. Here, we provide a review of recent efforts in integrating ML
methods towards catalyzing combustion science and engineering.

The systematic discovery of scientific and engineering knowledge
can be broken down to the following steps [98], see Fig. 3: (i)
formulating hypotheses, (ii) planning tests, (iii) performing tests, and
(iv) distilling knowledge. So far, developments in combustion ML have
largely been restricted towards aiding scientists in tasks related to
distilling knowledge and performing tests. Combustion ML methods
have largely been unsuitable for planning tests and generating scientific
hypotheses, which are typically been performed exclusively by human
scientists within a healthy research and development environment,
occasionally with specialized tools such as design-of-experiment meth-
ods [99]. As such, we discuss different combustion ML techniques for
distilling knowledge in Section 3.1, with methods for aiding scientific
tests in Section 3.2.

3.1. Distilling knowledge

Early data processing techniques, such as linear regression [54], re-
sulted in valuable contributions including the Arrhenius equation [56]
and transport properties [57], which was used to further understand-
ing of chemical kinetics. By extending linear regression with sparse
regularization approaches (that introduce constraints during the op-
timization process in order to obtain desirable, and often simpler,
model behavior), sparse regression can be employed for model dis-
covery by identifying optimal linear combinations of analytical terms
within equations [100]. Sparse symbolic regression has been popu-
larized within physical domains through recent efforts in developing
automated equation discovery suites for dynamical systems and astro-
physics [101,102]. Within combustion, this approach has been used for
constructing closure models for turbulent-chemistry interactions [103].
Recent work [104] has shown that models derived via symbolic re-
gression can provide a similar functional form to a model derived via
analytical arguments, which demonstrates a promising path towards
an automated alternative to mathematical reasoning for discovering
combustion-relevant models.

Similarly, dimensionality reduction approaches, such as PCA [58],
have a long history of distilling high-dimensional data into more tan-
gible forms for visualization, interpretation, and computation [106].
These approaches are especially useful in modern computational com-
bustion problems for reducing the cost of modeling high-dimensional
thermo-chemical state spaces, especially with stiff chemistry associ-
ated with fast chemical time-scales. For example, Kumar et al. [107]
performed detailed numerical simulation (DNS) of a 3D methane/air
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slot-burner configuration, with the thermo-chemical state reduced by
PCA. This approach resulted in approximately 70-fold and six-fold
reduction in computational cost and memory, respectively, while main-
taining reasonable accuracy in reconstructed instantaneous and statis-
tical quantities (related to turbulence, flame-structure, and turbulence-
chemistry interaction). The same approach was then extended towards
more complex fuels, including 𝑛-heptane and primary reference fuel,
in a 2D DNS of an engine-relevant configuration [108]. Thus, progress
has been made towards automating computational acceleration for
simulations of increasingly realistic combustion systems.

Beyond extensions to challenging configurations, researchers have
focused on improving these PCA-based approaches for combustion
applications. Jonnalagadda et al. [109] suggested the consideration
of fourth-order statistical moments, instead of conventional second-
order statistical moments within the PCA formulation in order to
better capture anomalous data points within the thermo-chemical state
space. Zdybał et al. [105] developed an automated approach for se-
lecting PCA input variables that maximized a proxy quantity for the
low-dimensional manifold quality, shown in Fig. 4. These improve-
ments highlight the adeptness of combustion researchers in modifying
dimensionality reduction tools towards solving important combustion
problems.

When improving ML approaches, it is crucial to consider trade-offs.
One common trade-off involves interpretability and expressiveness.
While linear reduction operations within PCA can result in an inter-
pretable manifold that can be transported with conservation equations,
the linear reconstruction operation can restrict the expressiveness of
this data-driven approach. In relation to this, Abdelwahid et al. [110]
replaced the linear reconstruction component of PCA with a multi-
layer perceptron (MLP) to demonstrate that the addition of a non-
linear mapping could outperform conventional tabulated chemistry
approaches in large-eddy simulations (LES) of an NH3/H2/air non-
premixed flame configuration. As shown in Fig. 5, Perry et al. [111]
unified linear decomposition operations found within PCA with non-
linear reconstruction and closure modeling operations into a unified
NN architecture, i.e., a co-optimized ML manifold (CMLM), that could
be optimized together in a supervised learning manner for an a priori
study involving a 3D premixed flame DNS. They showed that this co-
optimization approach resulted in more accurate predictions of filtered
quantities, when compared to a naïvely integrated PCA+NN approach.

Non-linear dimensionality reduction techniques may be more suit-
able in applications where linear relationships between input data and
reduced manifold are not necessary. For example, autoencoder NN
architectures can be viewed as non-linear extensions of PCA [112]. Han
et al. [113] demonstrated that non-linear manifolds generated by con-
volutional autoencoders could be employed towards computing the
flame stability index directly from raw flame images captured by
high-speed cameras. Iemura et al. [114] demonstrated that manifolds
extracted from variational autoencoders could be employed towards
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Fig. 4. Iterative improvement of PCA manifolds through optimization of manifold quality criterion . Reprinted from [105], Copyright 2023, with permission from Elsevier.
Fig. 5. PCA, non-linear mapping, and closure modeling represented by a unified NN
architecture that is shown to outperform a naïvely integrated PCA+NN approach in a
closure modeling problem. Adapted from [111], Copyright 2022, with permission from
Elsevier.

analyzing the trajectory of cool flame oscillation phenomena. This
latent space, shown in Fig. 6, demonstrates that a coherent trajectory
for representing five different states of cool flame oscillation dynamics
could be extracted from this deep learning approach. However, we
note that deep learning manifolds require careful treatment due to
potential over-fitting, which result in non-generalizable approaches,
and are much less interpretable than PCA since the relationship be-
tween the inputs and the latent space is no longer represented through
a linear combination [115]. These trade-offs could be important for
developing generalizable and inspectable manifolds for analyzing novel
combustion conditions.

Beyond dimensionality reduction, clustering algorithms have also
been employed and developed for automating knowledge distillation
across a wide range of problems within combustion science and en-
gineering, see Fig. 1. For example, 𝑘-means [59], one of the earliest
clustering algorithms, is still being actively developed towards solving
combustion problems. Ullman et al. [116] extended 𝑘-means by specif-
ically segmenting highly reactive regions within combustion flowfields
through the inclusion of a cluster-dependent scaling matrix constructed
from the Jacobian of source terms. Dave et al. [117] demonstrated
5 
Fig. 6. Variational autoencoder latent space, i.e., reduced manifold representation of
five different states of cool flame oscillation dynamics. Reprinted from [114], Copyright
2023, with permission from Elsevier.

the use of Vector Quantization PCA, which is a PCA-based clustering
technique, in automatically detecting important features within DNS
datasets of MILD combustion. Wang et al. [118] demonstrated that
clustering algorithms such as affinity propagation [119] could be used
for extracting representative data samples that can be used in place
of the full dataset for costly post-processing methods. This cluster-
based sampling strategy has also been employed, together with the
aforementioned dimensionality techniques, for lowering computational
costs of high-fidelity simulations [120,121]. Clustering techniques can
also be employed to improve other ML methods, as seen with local
approaches [122] that employ PCA on localized clusters identified via
data-driven means.

We can expect to see continued discoveries and improvements for
combustion applications of both clustering and dimensionality reduc-
tion techniques, given the proficiency demonstrated by combustion
researchers in this field. This can help automate pattern discovery in
increasingly complex datasets as diagnostic and simulation data grow
in capabilities, and accelerate high-fidelity calculations towards more
realistic configurations.

3.2. Performing tests

As mentioned in Section 2, the proliferation of supervised learn-
ing approaches is catalyzed by the increasing availability of software
packages for ML. Packages such as scikit-learn [63] provide an easy-
to-use interface to bug-free implementations of ML models suited for
small datasets [55,80]. In contrast, deep learning packages such as
TensorFlow [74], PyTorch [75], and JAX [76] provide access to easily-
parallelizable and GPU-compatible methods that provide higher pre-
dictive accuracy with datasets in more complex modalities involv-
ing representations of data (such as time-series measurements, spatio-
temporal flowfields, chemical graphs, and flame images), but with
higher computational cost and lower interpretability [123]. Similar
to the discussion presented in Section 3.1, choosing between the two
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approaches is typically based on trade-offs involving computational
resources, inference-speed, and interpretability requirements.

Both categories of supervised learning approaches are useful for
performing combustion experimental and computational tests as vir-
tual sensors, control systems, or surrogate models for chemistry, com-
bustion closures, and manifold representations [18]. However, many
studies focusing on combustion chemistry tend to employ small-data
ML approaches since their resulting datasets are typically represented
with tabulated modalities. For example, linear regression with sparse
regularization has been demonstrated as a surrogate for molecular
dynamics simulations in the aggregation of poly-cyclic aromatic com-
pounds [124]. Gradient-boosted decision trees [125], arguably the most
suitable method for tabular data [126], has been recently employed
as a surrogate for experimental measurements in determining the rate
constants of alkyl ester and atomic hydrogen in a study focused on
bio-diesel components [127]. These supervised learning algorithms
provide accurate and cost-effective alternatives to costly simulations
and experiments, as long as sufficiently representative data is available.

Despite the effectiveness of tree-based ML approaches, NN-based
approaches involving MLPs can sometimes be preferred, due to the
ability to adapt to problems via cost-effective transfer learning tech-
niques [128], which involve additional training of pre-trained model
weights with newer datasets. For example, Zhang et al. [129] demon-
strated a 25-fold improvement in data efficiency when employing
transfer learning on MLPs in a reaction optimization problem. With
data from experimental measurements, Kildare et al. [130] found that
transfer learning resulted in approximately 90% improvement in train-
ing data efficiency, when predicting temperature fields in a jet-in-hot-
coflow flame configuration with deep learning models. The improved
data efficiency offered by transfer learning reduces the labor required
for collecting combustion measurements. Since backpropagation [55]
used in training NNs are a form of automatic differentiation (AD),
benefits in computation can also be obtained when using NNs with
other AD-based techniques. This was demonstrated when Su et al. [131]
combined a modified chemical reaction NN [132] with adjoint sensitiv-
ity methods for kinetics parameter optimization of jet propulsion and
𝑛-heptane fuels.

Deep learning models can also be suitable tools for exploring more
complex data modalities. Kim et al. [133] developed a graph NN
architecture, which accepted molecular graphs (with atomic and bond
energy information) as inputs, for solving a cetane number prediction
problem. As illustrated in Fig. 7, they showed that the hidden layers
could be manipulated towards identifying functional groups responsible
for different cetane numbers. Given the range of conditions involving
data availability, problem scope, complementary techniques, and chem-
ical representations within combustion chemistry, we can expect to see
continued applications and improvements of a wide range of low-cost
and accurate supervised learning techniques for aiding with predictive
tasks within this domain.

Combustion experimentalists have also demonstrated a preference
for applying a variety of deep learning models towards aiding a wide
range of measurement tasks, due to their convenient ability to di-
rectly accept raw images with minimal feature engineering. For ex-
ample, Yoon et al. [134] trained a convolutional NN (CNN) [135],
with a loss function based on proper orthogonal decomposition (POD),
for denoising time-resolved flame emission spectroscopy data from a
methane/air flat flame burner. The inclusion of the POD loss term was
shown to reduce the quantified uncertainty of gas property predictions.
Gharib et al. [136] proposed to combine a CNN with an MLP for devel-
oping a flame-lift-off detector for real-time flame stability diagnostics
with high-speed cameras. In another real-time application, Dai et al.
[137] explored the use of three different deep learning architectures
(based on CNNs and long-short-term-memory (LSTM) networks [138])
for reconstructing 3D soot temperature and volume fraction from flame
images. These deep learning approaches show similar predictive ca-
pabilities when compared to a traditional volumetric reconstruction
6 
Fig. 7. Embeddings extracted from graph NN hidden layers categorized to different
functional groups with different cetane numbers. Reprinted from [133], Copyright 2023,
with permission from Elsevier.

Fig. 8. Comparison of different deep learning approaches in reconstructing soot
temperature. Reprinted from [137], Copyright 2023, with permission from Elsevier.

method (as shown in Fig. 8) with up to over 40-fold improvements
in computational speed-up. Cheng et al. [139] proposed combining
traditional reconstruction techniques with a generative adversarial net-
work (GAN) for reconstructing 3D soot fields from luminosity signals
at reasonable computational costs. These real-time ML-based systems
are promising for developing improved diagnostics systems that could
be relevant for automating tasks related to monitoring emissions and
important phenomena in emerging combustion systems.

Deep learning models also enable researchers and engineers to fuse
heterogeneous data sources. For example, Chung et al. [140] employed
a CNN model that could combine sparse experimental Schlieren mea-
surements of a laser-ignited rocket combustor [141] with corresponding
time-averaged flowfields, in order to predict the spatio-temporal dy-
namics of ignition kernels. The resulting deep learning model was
then combined with a stochastic differential equation for generating
spatially-resolved ignition probability maps with affordable ensemble
calculations, see Fig. 9.

The preference for deep learning techniques is also observed in
closure modeling, which help in providing researchers and engineers
with more accurate predictions and analyses. In an a priori turbulent
super-resolution study, Nista et al. [142] demonstrated that a GAN,
regularized with physics-based loss terms, for LES closure modeling of
unresolved momentum and scalar fluxes could generalize well across
different out-of-distribution conditions involving different Reynolds
and Karlovitz numbers in a methane/air premixed flame configuration.
Given the popularity of physics-informed approaches for turbulent clo-
sure modeling [143], Chung et al. [91] benchmarked metrics (related to
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Fig. 9. Predictions of ignition probability using a physics-embedded stochastic
differential equation (SDE)-ML model, showing (left) SDE-ML architecture and
(right) ensemble-averaged experimental Schlieren measurements. Adapted from [140],
Copyright 2024, with permission from Elsevier.

predictive accuracy and computational cost) from five different deep-
learning based super-resolution models with a 2 TB public turbulent
combustion dataset [144]. Through neural scaling analysis, the authors
found that predictive benefits from a physics-based ML approach scale
in log-linear fashion with computational power, as presented in Fig. 10.
The results provide empirical evidence that disagrees with the notion
that physics-based approaches are useful mostly in small data and
model scenarios [145].

Despite these advances in deep-learning-based closure modeling,
employing GPU-accelerated deep learning techniques within a posteriori
simulations can be challenging. One challenge involves the need for
heterogeneous (both CPU and GPU) numerical solvers. As such, there
is still a need to explore ML techniques that can be easily deployed for
inference within CPU-based solvers. In an a posteriori study involving
turbulent spray flames, Yao et al. [146] demonstrated that existing
gradient-boosted decision trees [125] could be deployed within numer-
ical solvers with similar performances to MLPs. Given their accuracy
compared to conventional algebraic closure models, these different ML
approaches show a promising path for more accurate simulations of
realistic combustion systems, while reducing the need for selecting and
developing new closure models for under-explored conditions.

Manifold methods involving tabulated thermo-chemistry present
another ML opportunity for integration with numerical solvers. This
differs from the PCA-based manifold methods in Section 3.1, as the
manifolds are typically constructed via domain knowledge in contrast
to an automated data-driven approach. Since early work in ML-based
tabulation [72,147], there have been several developments. Readshaw
et al. [148] presented a robust data curation strategy for MLP-based
tabulated chemistry within LES of a premixed swirl burner. The re-
sulting MLP was shown to be approximately 14 times faster than
conventional finite-rate chemistry with a low-memory footprint. Chi
et al. [65] further investigated the computational benefits of MLP-
based tabulated chemistry, and found in an a posteriori study that there
was a trade-off compared to conventional tabulation: MLPs were more
memory efficient but showed more time complexity. Nikolaou et al.
[149] further formalized these trade-offs by developing a criterion for
choosing between conventional and NN-based tabulation methods via
the use of empirical scaling laws. These efforts in ML-based tabulated
chemistry highlight a mature ML application within combustion, where
systematic recommendations can be made for optimal deployment of
ML tools.

Another challenge in the integration of ML methods with numerical
solvers involves the presence of spurious non-physical errors that nega-
tively impact numerical stability [143]. In an a priori study, Nakazawa
et al. [150] demonstrated that the introduction of domain knowledge
via physics-guided loss terms can diminish these spurious errors in
source term modeling within a V-flame configuration.

In a posteriori LES of a premixed jet flame configuration, Ho et al.
[151] demonstrated that the combined use of algebraic and NN-based
7 
closure models ameliorated spurious errors from the NN, see Fig. 11.
For modeling stiff chemical source terms, Owoyele and Pal [83] pro-
posed the employment of customized architectures for treating systems
of ordinary differential equations (ODEs), and showed that neural ODE
architectures were useful in mitigating these spurious errors within
0D calculations of a hydrogen/air mixture. Vijayarangan et al. [152]
later extended the application of neural ODEs towards evolving non-
linear manifolds (generated via autoencoders) of hydrogen/air and
ethylene/air chemical systems within 0D calculations. Regression-based
errors can also be avoided by focusing on prediction tasks that only
indirectly influence flowfield quantities [153]. For example, Malpica
Galassi et al. [154] employed NNs as surrogates for costly Jacobian
eigenvector calculations required within a computational singular per-
turbation. Another approach for addressing these regression errors
would involve improving the interpretability of ML-based models. How-
ever, these developments within this research direction remain an
active research pursuit across most deep learning domains [155].

Many of the combustion ML applications mentioned in this section
have focused on applications where errors do not result in safety or
ethical concerns. In relation to this, combustion control is a domain
where additional robust ML measures are required to ensure safe
deployment [18]. As such, this field of combustion ML applications is
relatively immature compared to virtual sensing, data post-processing,
and computational modeling applications. In a computational study in-
volving thermo-acoustic instabilities, Alhazmi and Sarathy [94] demon-
strated that a recent development of safe RL [157] could be employed
towards active control of combustors in a model-free manner. Zhan
et al. [95] developed a safe RL scheme tailored for intelligently con-
trolling real-world coal-fired power plants, which helps maintain high
combustion efficiency during runtime. Despite the challenges posed by
developing and testing safe ML techniques in potentially hazardous
situations, further research into this largely under-explored, but im-
portant, area could lead to promising control techniques that increase
the range of effective operating conditions in sustainable combustion
technology.

To summarize this section, there are numerous nuances that require
expert treatment when developing ML methods for complementing
the different fields found within combustion science and engineering.
This provides opportunities for further combustion ML research to
develop improved autonomous tools for treating different constraints
posed by data modalities, computational resources, interpretability
requirements, and safety constraints.

4. Towards an AI-based combustion scientist

In Section 3, we reviewed progress of ML techniques for assisting
combustion researchers and engineers in computational tasks related
to distilling knowledge and performing tests, such as dimensionality
reduction, surrogate modeling, and data partitioning. ML foundation
models offer greater versatility by extending their applications to tasks
typically reserved for human action as AI agents, as shown in Fig. 3.
This provides opportunities for automating a broader range of tasks
that could catalyze combustion research towards addressing its most
pressing challenges, such as the discovery of new fuel properties, im-
proving energy conversion efficiencies, and exploring novel combustion
strategies.

Here, we introduce readers to the current leading AI paradigm,
involving ML foundation models in Section 4.1. In addition, we demon-
strate and evaluate state-of-the-art multi-modal foundation models in
performing scientific tasks within combustion in Section 4.2. Note that
since ML foundation models are currently the leading approach in
performing human-like tasks, we will now begin to use the terms ML

foundation models and AI agents interchangeably.
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Fig. 10. Scaling behavior when scaling with computational power (measured in FLOPs) and number of model parameters in deep-learning based turbulent super-resolution
application to represent subgrid-scale stresses.
Source: Adapted from [91].
Fig. 11. LES of a premixed turbulent flame, showing instantaneous solutions of the
filtered progress variable fields for simulations performed with (a) physics-based flame-
surface-density (FSD) model [156] and (b) hybrid ML model; black isolines in zoomed
view show regions in which the ML model is used. Reprinted from [151], Copyright
2024, with permission from Elsevier.
8 
4.1. ML foundation models

An ML foundation model is a general purpose ML model (typically
with >1B trainable parameters) that has been (i) pre-trained offline via
self-supervised learning [158], i.e., supervised learning with minimal
labeling of large and diverse datasets (typically terabyte-scale), which
can then be (ii) fine-tuned, i.e., further offline training with super-
vised transfer learning involving smaller and more specific datasets for
tailored downstream applications. Many foundation models also incor-
porate (iii) post-training treatment to improve their behavior beyond
their offline training.

The most prominent example of foundation models are seen within
language domains, where models such as GPT-3 [159] (with up to
175B parameters) are pre-trained with 570 GB of text data for next-
token/word prediction. This model is later fine-tuned for perform-
ing human tasks, such as following instructions [160] and writing
code [161]. Post-training, the model is continuously improved with
RL from online feedback [160] to better respond to changing user
behavior, and augmented with external tools and databases [96,162].

This section discusses potential developments in these three main
components required to develop foundation models within combustion.
Specifically, large scientific and engineering datasets that could be used
for pre-training models are discussed in Section 4.1.1. Next, the benefits
of transfer learning are demonstrated in Section 4.1.2. Finally, potential
directions for integrating popular post-training within combustion is
proposed in Section 4.1.3.

4.1.1. Large pre-training datasets for combustion
The first step in developing an ML foundation models involves

pre-training on large volumes of minimally processed data via self-
supervised learning techniques [158]. Examples of self-supervised learn-
ing tasks include next-word/token prediction in language domains [163]
,
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image reconstruction in computer vision applications [164], and next-
timestep prediction in dynamical systems [165]. Self-supervised learn-
ing enables ML models to harness large datasets in a cost-effective
manner by focusing training on information inherent within data struc-
tures (such as smoothness or continuity within flowfields), instead of
information provided by costly labeled datasets. The weights from the
resulting pre-trained models can then be shared publicly and adapted
for more complex tasks with smaller (and thus, more cost-effective)
labeled datasets through transfer learning [128]. Thus, the key require-
ments of large-scale pre-training involve public repositories for data
and model weights, as well as a collaborative scientific community that
can maintain and contribute to public access of these weights and data.

For example, foundation models in language domains are typically
pre-trained on data from the Common Crawl repository [166], which
provides free access to petabytes of text data extracted from the World
Wide Web. Weights of these models are then made available via an
open-source platform [167], which also provides a benchmark leader-
board with up-to-date and transparent information on the capabilities
of these models in a range of practical tasks. Both data and model
weights, as well as auxiliary tools for improving access, currently
heavily rely on contributions from the open-source community for
continuous improvements and maintenance.

Beyond language, scientific domains have begun to adopt these
practices in developing their own foundation models. For example,
weather-related foundation models are pre-trained for next-timestep
prediction problems using the petabyte-scale ERA5 dataset [168]. This
has led to a growth in various weather-based pre-trained models such
as GraphCast [165], Pangu [169], and FourCastNet [170]. Platforms
and community contributions within scientific domains are not yet
as mature as in language applications, as many of these datasets are
stored in separate repositories with minimal tools for improving access.
However, organized efforts such as WeatherBench [171] show promise
in consolidating accessibility to these pre-trained models.

Combustion researchers have also long adopted community-based
practices for accelerating scientific progress. For example, community
contributions and shared resources have been prevalent within the
chemical kinetics community. Here, finite-rate chemistry models, along
with transport and thermodynamic properties, are easily accessible. In
addition, open-source scientific codes such as Cantera [32] continu-
ously improve access to chemical kinetics resources. Recently, these
practices have started to gain traction within the turbulent combus-
tion research community. This can be exemplified through BLAST-
Net [144], an open-source effort that aims to provide public access to
ML-ready diverse DNS data by leveraging the combustion research com-
munity [91,172]. Currently, BLASTNet contains approximately 5 TB of
data from nearly 40 different reacting and non-reacting flow configu-
rations, and has been shown to be useful for benchmarking flowfield
super-resolution [91], which is a combustion-related self-supervised
learning task that has direct applications in closure modeling.

The motivation behind these different efforts in ML data and model
sharing is linked to the discovery of scaling properties in deep learning-
based models [78]. In essence, accuracy in deep learning models has
been found to scale with an increasing number of diverse training sam-
ples and model size. We illustrate this through measuring the error of
closure terms predicted by a residual-residual dense block deep learn-
ing architecture [164] (see Fig. 10), across different model sizes and
training samples, in a super-resolution task with the aforementioned
BLASTNet dataset [144]. The training target consists of 1283 volumetric
domains of density and 3D velocity components extracted from public
DNS data, while the input consists of the corresponding Favre-filtered
and downsampled (by eight-fold) data. All models are trained in a
similar manner with the same adaptive learning rates ranging from 1e-

to 1e-5 on the Adam optimizer [173] for 32,000 training iterations
ith data mini-batches of size 64. The resulting models are tested on
n unseen test set of 173 volumetric data subsampled from 27 DNS
 l
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Fig. 12. Log–log plot of RMSE in ML test set predictions of the mean of six subgrid-
scale stress components ⟨𝜏𝑠𝑔𝑠𝑖𝑗 ⟩ with computational complexity, measured in FLOPs,
for three training sets of varying number of unique samples from different DNS
configurations. RMSE is normalized by mean of ⟨𝜏𝑠𝑔𝑠𝑖𝑗 ⟩ across the test set.

configurations. Methods for sampling the training and test data are
provided in further detail in Ref. [91].

Fig. 12 shows a log–log plot of normalized root mean square error
(RMSE) in ML test set predictions of mean subgrid-scale stress ⟨𝜏𝑠𝑔𝑠𝑖𝑗 ⟩

ith computational complexity, measured in floating point operations
FLOPs), for three training sets of varying number of unique samples
rom DNS configurations. For all training datasets, the ML error de-
reases with increasing computational complexity, following the power
aw RMSE ∝ FLOPs−𝛼 . This empirical power law property has also been
bserved in other ML domains [78] and was confirmed in a scientific
L application for reacting flows [91]. With an approximate 16-fold

ncrease in unique training samples, 𝛼 increases from 0.13 to 0.26.
his indicates that the ML models exhibit improved scaling behavior
hen exposed to larger and more diverse datasets. This highlights the

mportance of scaling data availability for accelerating ML development
ithin combustion.

.1.2. Fine-tuning via supervised transfer learning
Even with access to large and diverse datasets, pre-training founda-

ion models with state-of-the-art performance can incur large compu-
ational costs and requires laborious multi-GPU configuration for train-
ng. For instance, training the most prominent open-source AI model,
.e., LLaMa-2 [43] (70B parameters) required 1.7M GPU-hours on
vidia A100 GPUs. With recent advances in low-rank fine-tuning [174]
nd quantization [175], fine-tuning a 70B parameter model requires
nly approximately 100 GPU-hours. With this framework, one could
asily develop foundation models towards a variety of language-based
ombustion tasks including writing chemistry/CFD code, summarizing
cientific literature, and answering scientific inquiries.

In other domains, this is already being demonstrated in a grow-
ng number of studies [46,48]. For instance, Song et al. [46] devel-
ped a small dataset (consisting of 52k samples of material-science
nstruction and responses) that was used to fine-tune LLaMa-1 [176]
odels for performing tasks related to analyzing material science lit-

rature. Romera-Paredes et al. [48] augmented a 340B parameter
oundation model [177] with a code testing module for discovering
lgorithms and heuristics for mathematical problems. These recent
xperiments demonstrate the potential of maturing ML technology in
ssisting with tasks beyond the scope described in Section 3, and
how promise for greater automation within combustion science and
ngineering through AI agents.

We highlight the benefits of supervised fine-tuning via transfer

earning by comparing predictions from two deep learning models
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Fig. 13. Comparison of (a) flowfields and (b) normalized MSE of ML predictions on unseen inputs, without and with transfer learning, in super-resolution of OH mass fraction
field.
(trained without and with transfer learning) in super-resolution of OH
mass fraction 𝑌OH, as demonstrated with Fig. 13. In this ML task,
the ground truth targets in the fine-tuning dataset are 17 samples of
2D slices (with 1282 cells) obtained from public DNS data [91] of a
premixed hydrogen/air flame configuration [178], with another 17
unseen samples kept for validating the models. These targets are Favre-
filtered and downsampled by eight-fold to obtain corresponding inputs
for the ML models. For both ML approaches, the Adam optimizer [173]
was employed, with a learning rate of 1e-4 with batch size of 17,
for training the same deep convolutional architecture [179] (with 2M
parameters). Prior to fine-tuning, the model was pre-trained until the
MSE loss plateaued, with 5528 total samples of velocity and density
flowfields from 27 DNS configurations provided by the BLASTNet
database [144]. In contrast, the model without transfer learning was
pre-trained with 17 samples from the fine-tuning set, until the MSE loss
matched the model with transfer learning. Information on the specific
DNS configurations is discussed in further detail in Ref. [91]. During
fine-tuning, both models are trained with 100 training epochs. Note
that one epoch corresponds to the sum of training iterations required
to loop through the training samples once, during gradient descent
optimization.

Fig. 13(a) compares flowfield predictions for OH mass fraction, 𝑌OH,
from the two ML models (without and with transfer learning), along
with corresponding input and ground truth targets. When compared
to the fine-tuned model, it can be seen that flowfield predictions from
the ML model are noisier without transfer learning. A quantitative
comparison of the prediction (normalized) mean squared error (MSE)
from an unseen validation dataset, as a function of training epochs,
between the two ML approaches is presented in Fig. 13(b). Here, it
can be seen that transfer learning enables training to converge after
approximately 20 epochs at a normalized MSE of 0.016, which is five-
fold more computationally efficient and has 67% lower error, when
compared to the model without transfer learning. These results, along
with those from Fig. 12, highlight the importance of public pre-trained
model weights and large pre-training datasets for optimizing compu-
tational and data efficiency, when developing combustion-related ML
models. In this spirit, we make all ML models available through GitHub
as supplementary material.

4.1.3. Post-training treatment
Even with large pre-training datasets and transfer learning-based

approaches, ML foundation models can still behave erratically when
predicting with new unseen inputs, often resulting in ML halluci-
nations [180] (e.g. outputting incoherent sentences, misrepresenting
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facts, inventing academic citations, and providing dangerous advice).
In the case of language-based foundation models, these spurious errors
in model predictions have led to practical and ethical concerns in
information trustworthiness [181].

Similar concerns can arise if combustion ML models generate spuri-
ous predictions, especially since mathematical and data-driven models
within combustion science and engineering are employed within safety
critical systems in aerospace, power, and transportation sectors. An ex-
ample of a spurious prediction in combustion ML is shown in Fig. 14(a),
where nonphysical reaction predictions are seen in the inert region
outside the central jet in a flowfield prediction from an ML-based
solver [182]. Similar hallucinations have also been reported in other
applications involving dynamical systems, including laminar [143] and
turbulent [183] non-reacting flows.

Outside of combustion, several post-training strategies have been
employed for ameliorating hallucinations within foundation models,
by incorporating domain knowledge via integration with external tools
[96] (where fine-tuned foundation models are used as an interface
for more reliable tools to perform specific actions) and knowledge
retrieval systems [162] (where fine-tuned foundation models inter-
face with external databases to supplement information beyond offline
training). Similar strategies in embedding physics domain knowledge
via physics-informed ML [143] have been increasingly popular within
combustion-related domains. External retrieval systems linking com-
bustion knowledge databases with language-based foundation models
have recently been explored [184]. However, post-training techniques
involving the use of RL and online learning, for providing continuous
updates to the foundation models from external feedback [160], have
yet to be explored within combustion.

These different treatments could be employed within combustion
applications to address spurious predictions illustrated in Fig. 14(a).
As shown in Fig. 14(b), a gating ML model can be employed to identify
subdomains where the ML-based solver is mispredicting. Then, the
more challenging subdomains can be treated with a reliable external
tool, such as a physics-based solver. This physics-based prediction can
then be used to augment ML predictions — resulting in an overall
improved prediction. Since numerical methods within this physics-
based solver can incur large computational costs, the ML-based solver
can be updated in situ via online learning with subdomain flowfields
from the physics-based solver, in order to improve ML predictions
with increasing number of timestep advancements. Similarly, the gating
network can also be iteratively updated via online learning on the
improved performance of the ML-based solver, which would reduce the
reliance of this proposed post-training approach on costly numerical
methods.
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Fig. 14. Spatio-temporal predictions of reacting flows via autoregressive modeling (a) resulting in spurious reactions and heat release, i.e., ML hallucinations, in inert regions
outside the central jet (circled region), and (b) proposed strategy for aligning ML foundation models by combining domain knowledge and online learning [182].
4.2. Assessing an AI combustion scientist

The previous section discusses the prospect of developing founda-
tion models solely with combustion data. As indicated in Section 2,
the progress of autonomous intelligent agents for performing general
research tasks (including within combustion) might involve the devel-
opment of multi-modal ML foundation models, where language-based
models are integrated seamlessly with combustion-based models.

In order to assess the opportunities provided by AI agents, we
perform an investigation of a computational combustion problem with
the GPT-4 model [42]. This is performed by entering text prompts that
request the AI agent to perform tasks related to the scientific process,
i.e., as listed in (i) formulating hypotheses, (ii) planning tests, (iii)
performing tests, and (iv) distilling knowledge [18]. Selected results
from this demonstration are shown in Fig. 15, while full prompts and
responses are provided in the supplementary material.

For hypothesis formulation, when instructed to suggest computa-
tional combustion studies that can be feasibly performed with an AI
agent, the agent provides six suggestions related to fuel mixtures,
alternative fuels, emissions, fuel additives, knocking, and fuel pyrolysis.
When providing these responses, the AI agent relies on the knowledge
stored within the model weights during pre-training and fine-tuning.
However, practical AI cannot solely rely on this stored knowledge,
as this trained knowledge could be outdated for tasks that require
more updated information. For this task, the AI agent uses tools (such
as search engines) to augment its stored knowledge and to over-
come its outdated training data. AI tool-use [96] and external knowl-
edge retrieval systems [162] are popular solutions for reducing agent
errors and boosting the range of agent actions, especially in tasks
where next-token predictions are limited in accuracy and capabili-
ties such as mathematical reasoning [185], and up-to-date knowledge
retrieval [162].

When prompted to plan tests for a scientific investigation, the AI
agent provides viable suggestions for fuel candidates involving ethanol-
gasoline and bio-diesel mixtures, and lists correct sources [22,186] of
chemical kinetic mechanisms for this study. However, we note that
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some links presented by the AI agent were inaccurate or broken, as
seen in the supplementary material. This tendency of AI agents to
hallucinate non-existent or incorrect information is an open research
issue [180], which has so far been only partially ameliorated through
a combination of tool-use [96], knowledge retrieval [162], and AI
interpretability [155].

Another challenge that can arise within this step is the broad
availability of chemical-kinetic models with different sensitivity ranges,
as they could result in suboptimal solutions for emissions and complex
configurations. This, however, can be partially addressed by more spe-
cific prompts and post-training treatments that provide the model with
better context of the user request. As foundation models are typically
trained on large corpora of publicly available code, the AI agent also
has significant code development capabilities, as shown by the present
AI agent’s capabilities in writing starter code for investigating ethanol
iso-octane fuel/air mixtures of different ratios in a homogeneous reac-
tor. However, the initial versions of the code contained defects that
arise from AI hallucinations. These issues can be partially resolved
through iterative interactions with the AI agent when conducting tests.

When conducting tests, the AI agent is prompted to modify the
starter code to output various quantities-of-interests (related to the
thermo-chemical state) from the 0D calculations of ethanol and iso-
octane fuel/air mixture. The generated code is then manually executed
on a local computer, with code outputs fed into the AI agent for
subsequent prompts. For more complex setups, this step can be au-
tomated with API access and tool-use mechanisms that involve AI
software packages such as LangChain [187]. In this demonstration,
we have restricted the configuration to only consider computational
experiments, since the interaction of AI agents with the physical world
through embodied AI [97] remains an open research issue. When
performing this task, the AI agent is unable to create code to output all
the suggested quantities of interest at once, and requested modifications
are prompted in a piece-wise fashion. This dependency on prompting
strategy is a feature of numerous ML foundation models [188]. As
seen with previous tasks, the AI agent hallucinates several quantities-
of-interests, such as flame speed and combustion stability, that are not
of relevance to 0D calculations.
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Fig. 15. Capabilities and limits of an AI agent identified during the present combustion-related scientific demonstration, with related research trends. Full prompts and responses
are provided as supplementary material.
To distill knowledge from the 0D reactor calculations, the AI agent is
prompted to write code for analyzing simulation results. The AI agent is
seen to employ common python packages for visualizing the temporal
behavior of temperature, pressure, and selected chemical. Next, we
assess multi-modal capabilities. Here, the AI agent is correct in pointing
out that the presence of unburned hydrocarbons in high ethanol fuel
indicates a trade-off when employing bio-fuel-blends.

To further inspect the knowledge within the AI agents in solving
combustion problems, we quantitatively evaluate the performance of
the GPT-4 model in answering 26 short questions related to combustion
fundamentals in thermo-chemistry, combustion, and chemical kinetics
that can be used to evaluate combustion knowledge at undergraduate-
and graduate-levels. We also compare GPT-4 performance with the
latest language foundation model available to the present authors, i.e.,
Gemini 1.5 [189], which uses an improved mixture-of-experts archi-
tecture that has been shown to improve the performance of language-
based foundation models [190]. The results from this analysis are
summarized in Table 1, with prompts, responses, and ground truth an-
swers presented in the supplementary material. Here, we also compare
these combustion scores with scores from public coding [161] and read-
ing comprehension [191] evaluation suites. We choose to present these
12 
Table 1
Quantitative evaluation of two language foundation models on various tasks.

Question type GPT-4 Gemini 1.5
(2023) (2024)

Codinga [161] 67.0% 74.4%
Reading comprehensiona [191] 80.9% 78.9%

Thermo-chemistry 46.7% 80.0%
1D flames 66.7% 83.3%
Chemical kinetics 60.0% 60.0%

Total combustion 53.8% 76.9%

a Indicates scores taken from the GPT-4 and Gemini 1.5 technical reports [42,189].

additional scores to further assess state-of-the-art AI performance in
tasks that could be performed by an autonomous combustion scientist,
specifically in combustion fundamentals, programming, and complex
communication.

GPT-4 and Gemini 1.5 can answer 53.8% and 76.9% of the com-
bustion questions correctly, respectively. Specifically, Gemini 1.5 can
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Fig. 16. Abridged responses from both GPT-4 and Gemini 1.5 models, when prompted with fundamental questions on combustion. Full prompts and responses are provided as
supplementary material.
answer combustion questions with similar performance to compre-
hension (78.9%) and coding-based (74.4%) tasks, while GPT-4 lacks
combustion understanding when compared to comprehension (80.9%)
and coding (67.0%). Nevertheless, these results show that state-of-the-
art ML foundation models are continuously improving towards human
level capabilities in understanding combustion.

Three prompts and corresponding responses from both GPT-4 and
Gemini 1.5 are presented in Fig. 16. Fig. 16(a) shows that both mod-
els understand nitrous oxide reactions, and corresponding knowledge
regarding chemical equilibria. While both models demonstrate under-
standing of heat of formation in Fig. 16(b), both models produce errors
in different manners. GPT-4 answers with the groups CH3– and –OH,
instead of the correct C– (H)3(O) and O– (C)(H) [192], respectively,
while Gemini 1.5 only mispredicts with C– (H)3. In Fig. 16(c), both
models are shown to relate chemical reactions with chemical rates
of production, and understand the implications of the quasi-steady-
state (QSS) assumption. However, both models fail in different manners
to provide the correct expression for [O] = 𝑘1[M]∕𝑘2. This inability
to reason mathematically, even for simple operations, is well known
within foundation models [180].

From the quantitative and qualitative behavior of these state-of-the-
art models in Table 1 and Fig. 16, we can infer that AI models might
be useful in solving combustion questions, coding, and communicating,
but will still require significant intervention via human interaction,
especially with the inconsistent errors resulting from these black-box
models. As such, AI agents today are not yet ready for full automation
within scientific research and engineering, but can, in their present
form, serve as co-pilots and knowledge engines for assisting combustion
researchers and engineers. However, the use of ML foundation models
for automation of scientific tasks is still an under-explored topic within
combustion. In Section 5, we highlight several research directions that
aim towards developing autonomous AI agents.
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5. Future opportunities for combustion AI

5.1. Discovery of new ML and AI tasks

As discussed in Section 3, researchers have successfully discovered
new ML methods for various combustion problems. Methods have
been developed for automatically extracting data-driven manifolds
from unlabeled data for scientific interpretation [113,114] and com-
putational acceleration [107,108] tasks. Labeled data has also been
employed by off-the-shelf and combustion-tailored approaches for sur-
rogate modeling purposes, particularly for complementing experimen-
tal sensors [134,136,137,139], closure modeling [91,142,146,150],
tabulated chemistry [65,148,149], and chemical optimization [129,
131,132]. Future efforts could be directed towards discovering self-
supervised learning techniques that would advance pre-training of ML
foundation models for combustion, as previous studies [193–195] have
shown that the predictive performance of these models can benefit from
the discovery of new domain-specific pre-training tasks. Within com-
bustion, self-supervised learning has begun to be explored, as seen with
experimental reconstruction [137,139], turbulent super-resolution [91,
142], and denoising [134] applications. Further discovery of these tasks
would be essential for developing effective, broadly accessible, and
general purpose tools for accelerating combustion science through task
automation.

5.2. Dataset curation

As shown in Section 4.1, deep learning models scale in predictive
performance with increasing size and diversity of data (see Fig. 12 for
ML-modeling of subgrid-scale stresses). Compared to other ML domains
involving language and vision, the development of large datasets within
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scientific domains can be a challenging task. Fortunately, our combus-
tion community has previously shown success in building large reposi-
tories of publicly accessible data. This is evidenced from early works in-
volving JANAF thermo-chemical data [29] and the NIST database [28],
and also within more recent efforts, as seen with the growing avail-
ability of measurements from chemical kinetic experiments that have
led to the diverse ecosystem of publicly accessible chemical kinetic
mechanisms for different fuels.

Recently, the availability of low-cost data storage has also prompted
the creation of multi-dimensional combustion flowfield datasets for
ML and reduced-order modeling purposes [90,91]. These datasets have
focused on high-fidelity reacting flow simulations, with many oppor-
tunities in storing and disseminating multi-fidelity and heterogeneous
data remaining under-explored [172]. With further support from re-
search institutions, government, and private sectors, these resources
can develop further in both diversity and accessibility. Beyond these
scientific datasets, there is also the opportunity to extract combustion
knowledge from vast text repositories containing combustion-relevant
literature [196] and source code [32,197], which complements re-
cent efforts in combining language models with combustion knowl-
edge [184]. These could be used to improve the mediocre combustion
knowledge shown in Table 1 via fine-tuning.

Despite the existing availability of these methods, these datasets still
need to be curated, pre-processed, and formatted to ML-ready stan-
dards. The labor-intensive nature of these suggested tasks is one reason
there has not yet been a fine-tuned foundation model specifically for
combustion, even with manageable fine-tuning costs and widely avail-
able pre-trained weights. Nevertheless, these efforts are sufficiently
tractable, and provide a relatively affordable approach for develop-
ing improved AI agents that could better help researchers in brain-
storming sustainability solutions, summarizing combustion literature,
or developing and testing basic chemistry code modules.

5.3. Evaluation and interpretability

If the aforementioned methods and resources reach sufficient ma-
turity for developing combustion ML foundation models, there would
be a need to develop techniques for assessing the predictive capabilities
and trustworthiness of the resulting models. This is especially true given
current limitations in prediction tasks that result in spurious errors
and hallucinations [180]. The naïve approach for evaluation would
involve metrics related to the loss function (such as cross-entropy or
mean-squared error) [62].

However, as the developed foundation models possess more general
capabilities in performing multiple tasks, there is a need to develop and
employ empirical metrics on curated benchmarks to sample the model
performance. This is analogous to measuring human intelligence and
competency through a series of examinations across different topics.
As partially demonstrated via Table 1, empirical benchmarks [198,199]
are built to assess abstract behavior such as the ability to code compe-
tently, reason mathematically, and communicate honestly. These eval-
uation suites could be adapted towards measuring more relevant abili-
ties, such as the ability of writing chemistry code, solving combustion
problems, and controlling combustion systems safely.

The popularity of empirical evaluations within AI and ML stems
from the difficulty in interpreting black-box deep learning models.
However, we note that there have been several emerging attempts in
interpreting deep learning models through the examination of their
underlying mathematical operations, i.e., mechanistic interpretation
[155], which has shown some degree of success in small models and
simple architectures. Given that (i) significant domain expertise is
required to develop domain-specific empirical evaluations and (ii) com-
bustion researchers have long been interested in developing inter-
pretable reduced-order models (see Section 3), there will be opportu-
nities for scientific contributions in both evaluation and interpretabil-
ity approaches. The combination of these approaches would help re-

searchers assess, inspect, and trust AI agents for performing scientific
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tasks. This is especially important for combustion problems due to
potential health risks in noxious emission and safety concerns within
any propulsion and power-generating combustion systems.

5.4. Towards complete autonomy

Combustion researchers will reach a similar level of AI maturity
(see Fig. 2) as other scientific domains [45–47], if fine-tuned multi-
modal combustion foundation models were to be developed. As dis-
cussed in Section 4, this would offer partial automation of many
combustion-related tasks. These tools would still require human inter-
vention due to issues related to hallucination and model transparency.
In addition, these tools would likely be applicable only within compu-
tational and theoretical domains with tasks (such as including scientific
code development, mesh generation, and chemical kinetic mechanism
generation), especially due to the large number of open challenges
related to deploying embodied AI within the physical world [79],
particularly when considering potential hazards that could arise from
failure in real-world combustion systems. While the pathway to over-
coming these technical challenge is only being partially addressed,
exponential growth in computing capabilities and increased interdis-
ciplinary collaborations can help pave a way towards autonomous
combustion science and engineering.

6. Summary

In this article, we discuss past, present, and potential developments
within ML and AI to catalyze combustion research, especially in the face
of climate-related challenges. After providing a holistic overview of ML
and AI techniques and discussing important contributions that led to
their increasing maturity in Section 2, we review recent progress in uti-
lizing ML methods across various combustion application tasks in Sec-
tion 3. By employing these ML methods, combustion researchers and
engineers have discovered new ways of automating tasks related to pro-
cessing measurements, optimizing chemical-kinetic models, discovering
thermo-chemical manifolds, and accelerating computations.

In many of these combustion ML applications, ML models with
limited parameters and training data have been shown to generate
erroneous predictions. Promising research directions for addressing this
challenge have typically involved the injection of scientific and engi-
neering knowledge, as well as the development of larger ML models and
datasets. We explore potential improvements in predictive capabilities
that could be obtained from pre-training and fine-tuning large ML
models, via a demonstration involving super-resolution of a reacting
flow configuration. In addition, we discuss potential developments in
RL and online learning that could further address issues related to ML
requirements on safety and interpretability.

Recently, general-purpose ML foundation models have shown suc-
cess in completing a wide range of human tasks. This has motivated
numerous scientific and engineering fields towards developing and
adapting these foundation models as AI agents within their respective
domains. To this end, in Section 4 we examine the capabilities of
leading foundation models in completing scientific tasks and answering
questions related to combustion. By considering specific combustion
problems to quantitatively evaluate the ability of current AI agents in
answering fundamental questions related to thermo-chemistry, com-
bustion physics, and chemical kinetics, we show that ML foundation
models are able to complete approximately 60% to 80% of assigned
tasks correctly, with errors resulting from ML hallucinations.

To manage these ML hallucinations and treat ML deficiencies, we
suggest research opportunities in Section 5 to further adapt foundation
models for automating combustion science and engineering through (i)
the discovery of new self-supervised learning tasks, (ii) the curation
of additional datasets for pre-training and fine-tuning, (iii) providing
public access to pre-trained model weights for reproducibility and

optimizing computational and data efficiency, and (iv) the development
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of interpretability and custom evaluation suites that can be employed
towards understanding future combustion AI agents. While results from
this demonstration show that a fully autonomous AI combustion sci-
entist is still not yet possible, they illustrate opportunities for current
AI agents to serve as co-pilots for assisting combustion researchers in
facing pressing challenges within the field.

We hope that the recommendations in this article, along with dis-
cussions involving previous work, can inform readers on methods for
developing AI techniques that can lead to multi-modal scientific agents
for solving combustion problems. This would in turn pave a pathway
towards autonomous combustion research.

In the words of the titan Prometheus in a famed ancient Greek
play [200], ‘‘Fire has proved for men a teacher in every art, their grand
resource’’, but whether fire can prove a teacher for the next-generation
of AI systems is left to the efforts of combustion researchers.
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Appendix A. Supplementary data

See https://github.com/IhmeGroup/pretrain_finetune for code used
for the demonstrations discussed in Section 4.1. Full prompts and
responses used to assess the ML foundation model in Section 4.2 are
provided as supplementary material.

Supplementary material related to this article can be found online
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