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Abstract: Physics-informed machine-learning (PIML) enables the integration of domain knowledge
with machine learning (ML) algorithms, which results in higher data efficiency and more stable pre-
dictions. This provides opportunities for augmenting—and even replacing—high-fidelity numerical
simulations of complex turbulent flows, which are often expensive due to the requirement of high
temporal and spatial resolution. In this review, we (i) provide an introduction and historical perspec-
tive of ML methods, in particular neural networks (NN), (ii) examine existing PIML applications to
fluid mechanics problems, especially in complex high Reynolds number flows, (iii) demonstrate the
utility of PIML techniques through a case study, and (iv) discuss the challenges and opportunities of
developing PIML for fluid mechanics.

Keywords: physics-informed machine learning; PDE-preserved learning; deep neural network; fluid
mechanics; Navier–Stokes

1. Introduction
1.1. Background and Motivation

In the last few decades, computational fluid dynamics (CFD) of compressible and
incompressible fluid flows has progressed significantly through finite difference, finite
volume, finite elements and spectral methods. With the increasing availability of high-
performance computational resources, we can now simulate complex turbulent flows
at increasingly higher spatial and temporal resolutions. Despite this progress, several
challenges still persist for conventional numerical and analytic approaches. For exam-
ple, solving inverse problems (e.g., for unknown boundary conditions or experimental
parameters) is still prohibitively expensive. More importantly, numerical approaches typi-
cally simulate configurations under idealized conditions that do not account for realistic
processes such as missing or noisy boundary conditions [1]. Moreover, direct numerical
simulations (DNS) of many practical turbulent systems are still unfeasible due to the com-
putational complexity of resolving all spatial scales in multi-physical processes. This is
especially true for complex flows involving phase transitions or chemical reactions, which
may require solving conservation equations for hundreds of species, introducing additional
complexity challenges that arise from dimensionality and stiffness.

Machine learning (ML) and data-driven techniques have been increasingly popular in
scientific and engineering fields, offering a paradigm shift that can help address these chal-
lenges. Recently, with improved hardware, such as graphic processing units (GPUs) and
tensor processing units (TPUs), data storage technologies, and access to a plethora of meth-
ods through open-source libraries, ML offers new opportunities for investigating modeling
and predicting fluid flows. ML can be employed to supplement incomplete domain-specific
knowledge in conventional experimental or numerical configuration by (i) exploring large
design spaces, (ii) identifying hidden patterns, features or multi-dimensional correlations,
and (iii) managing ill-posed problems. As such, ML has become a popular tool for studying
fluid flows, especially when combined with the existing domain knowledge and intellectual
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traditions that arise from the study of physical systems. To this end, this paper aims to
review and discuss the intersection of existing physical knowledge with new methods
offered by ML toward solving various problems tied to fluid flows.

1.2. Fundamentals and History

Here, we provide a summary of ML fundamentals and a historical perspective. ML
can be categorized into supervised, unsupervised, and semi-supervised learning [2]. Super-
vised learning combines a collection of methods that learn input–output relationships from
labeled data [2] (see Figure 1). This is opposed to unsupervised learning, which extracts
from unlabeled data, as well as semi-supervised learning, which contains attributes of both
supervised and unsupervised learning. Typical applications of supervised learning include
classification and regression problems.

Supervised LearningUnsupervised Learning Semi-supervised Learning

• Clustering
• Dimensionality Reduction
• Knowledge Discovery
• …

• Reinforcement Learning
• Super-resolution
• Generative modeling
• ...

RegressionClassification

• Anomaly Detection
• Subdomain Classification
• …

Machine Learning

Hybrid RegressionPure Regression

• Spatiotemporal modeling
• Inverse modeling
• Symbolic regression
• …

• Turbulence modeling
• …

Figure 1. ML applications in fluid mechanics.

Among the most popular algorithms in supervised learning is the neural network
(NN), which is also the centerpiece of many deep learning techniques. Given the over-
whelming focus across the numerous fields on NNs and deep learning techniques, this
review will focus largely on physics-informed supervised and deep learning techniques.
In its most basic form, NNs are multi-layer perceptrons (MLPs) consisting of multiple
layers, and they generate predictions by forward propagating the outputs of each layer to the
next layer. For example, a one-layer MLP makes a prediction ŷ by first evaluating a linear
function z from inputs X, weights W, and biases b:

ŷ = σ(z) with z = WX + b . (1)

Nonlinearity is then introduced to z through an activation function, which takes the
form of sigmoid, tanh, ReLU, and other nonlinear functions [3]. The weights and biases
determine the output of the NN, and they are determined through training, which involves
optimizing a loss function through a gradient descent [4] operation.

The key idea behind NNs took form in the 1980s, with the introduction of back-
propagation [5]—which leverages chain ruling to significantly reduce the computational
costs of training deep learning models by allowing for low-cost evaluations of gradients.
Similarly, convolutional neural networks (CNNs)—a commonly used model architecture
for application to spatial problems (as encountered in flow physics)—were introduced in
the late 1990s [6]. While the concepts behind NNs are not particularly new, the increas-
ing interest in deep learning can be linked to two applications. Firstly, seminal work by
Mnih et al. [7,8] in the mid-2010s on deep reinforcement learning (RL) demonstrated the
utility and wide-ranging applicability of deep learning algorithms in solving numerous
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challenging problems. Secondly, a deep learning model with 152 layers was demon-
strated by He et al. [9] to outperform human performance in the ImageNet [10] image
recognition challenge. This work demonstrated that the combination of deep multi-layer
architectures can be combined with powerful GPUs and massive datasets to generate highly
accurate predictions.

With the increasing interest in ML methods, data-driven techniques have been applied
extensively to a wide range of fluid mechanics and turbulence problems. For example,
early works [11,12] focused on examining the feasibility of replacing conventional algebraic
turbulence models with ML models. While vanilla (canonical or baseline) ML models
possess the necessary expressiveness to model nonlinear turbulent behavior, these studies
identified the difficulty in accessing sufficient data as a major bottleneck for ML models to
generalize well outside of the training data. As such, many vanilla ML models, which rely
solely on the abundance of data, are currently not suited for many tasks in fluid mechanics
problems. Hence, the research community has developed interest in an alternate paradigm,
which combines existing domain knowledge with ML techniques, which is known as
physics-informed ML (PIML).

1.3. Applications of ML in Fluid Mechanics

In this section, we categorize and provide examples of ML applications within the
study of fluid mechanics. As seen in Figure 1, unsupervised algorithms such as principal
component analysis [13] and the k-means [14] algorithm are typically used to process unla-
beled data through dimensionality reduction and clustering, respectively. Semi-supervised
learning techniques involving RL and generative ML have been applied toward control-
ling flows [15] and automating turbulence modeling [16]. However, with the exception
of super-resolution [17,18] (which involves feeding low-resolution flow field data into
generative ML to predict a corresponding upsampled high-resolution flow field), studies
involving these techniques have not been investigated as extensively as supervised learning
algorithms, which can be broadly categorized into classification and regression problems.
Studies employing classification methods are usually limited to problems which require
choosing and blending from a set of predefined models within a simulation domain [19,20]
as well as detecting faults and anomalous events [21].

When applied to fluid mechanics, regression can be categorized into pure and hybrid
approaches, which seek to treat a modeling problem either entirely or partially, respectively.
The most popular application of pure regression is the prediction of spatiotemporal dy-
namics in flow configurations, while inverse modeling [22] and symbolic regression [23,24]
enable deducing unknown parameters and formulate algebraic models, respectively. The
physics-informed neural network (PINN) [25] has received wide attention for the purposes
of pure regression. It leverages well-posed PDE information to make data-driven predic-
tions, even in data-sparse regimes. The utility of PINNs, along with its numerous variants,
has been investigated in numerous studies [22,26–35], on both spatiotemporal and inverse
modeling. Other PIML methods for spatiotemporal modeling include the PDE-preserving
NN (PPNN) [36], physics-informed convolution recurrent network (PhyCRNet) [37], and several
others [38–44]. Some of these methods will be discussed later in Section 2.

The most popular application of hybrid regression is turbulence closure modeling [45].
Due to the widerange of spatiotemporal scales in a turbulent flow, resolving the smallest
scales in a practical configuration remains a daunting task. Thus, it is common to only
resolve the larger scales, e.g., in Reynolds averaged Navier–Stokes (RANS) or large-eddy
simulations (LES), and model the effects of small scales on larger scales using a closure
model. ML has been extensively used for closure modeling, such as the evaluation of
Reynolds stresses in RANS [46–52] and designing subgrid-scale statistics in LES [53–56].

1.4. Outline

In this work, we review PIML applied to fluid flows. Given the popularity of ML in
contemporary research, numerous reviews on applying ML to science and engineering
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can be found from various perspectives including fluid dynamics [45,57–60], combus-
tion [61–63], environmental engineering [64,65], ordinary/partial-differential equations
(ODEs/PDEs) [66] and specific PIML approaches [1,67]. In order to distinguish this review
from existing literature, we aim to provide information and perspectives, specifically for
addressing unique challenges and applications offered by employing PIML methods to
fluid mechanics problems. After this section, we review and discuss previous PIML studies
in Section 2. This is followed by a case study comparing PIML with vanilla ML models in
Section 3. The open questions and opportunities in developing PIML models for fluid flow
problems are addressed in Section 4 before presenting the concluding remarks in Section 5.

2. Physics-Informed Machine Learning

In this section, we discuss key concepts behind and review existing studies on PIML
applied to fluid mechanics problems with a particular focus on challenging configurations.
PIML was first proposed as a framework that can account for physical domain knowledge
in every stage of ML for improving predictive accuracy in conditions where data are
sparse or insufficient [68]. In other words, as can be seen in Figure 2, PIML is formed by
embedding domain knowledge into (i) the model input/output, (ii) model loss functions,
and (iii) model architecture, which will be discussed in detail in the following sections.

Training

Training Data Test Data

Loss function ML model

Predictions

Physics-informed data

Physics-informed loss
Physics-informed
architecture

Figure 2. Different methods for embedding physics domain knowledge into a supervised learning
framework.

2.1. Physics-Informed Features And Labels

Physics can be embedded into the input data (features) and the model output (la-
bels) through pre-processing steps involving physical intuition, feature selection [69] and
extraction [70], as well as mathematical transformations.

The choice of labels can be of particular interest during predictive modeling, as uni-
versal approximators, such as ML models, will possess small but significant quantities
of approximal error. As such, there has been a significant focus on employing ML mod-
els in problems that already possess existing errors—such as with turbulence modeling,
where we know errors exist within current analytic models [71,72]. The application of
ML to turbulence modeling is popular and has been reviewed extensively by several
authors [45,73,74]. Another popular choice of model outputs involves inverse model-
ing [75], which is the task of obtaining the model parameters from measured data, as we
know that conventional CFD solvers cannot be applied effectively in this domain.

Another physics-informed method involves selecting an easily trained form of a label
that can be transformed to another desired quantity. For example, Cruz et al. [76] proposed
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the use of the divergence of the Reynolds stress tensor, i.e., the Reynolds stress vector, as
a label, instead of the Reynolds stress tensor. This is based on the observation that errors
in the mean velocity arise when inserting the Reynolds stress tensor (extracted from DNS
databases) into the mean momentum balance equations. As shown in Figure 3, when
demonstrated on a turbulent (Re = 3200) square duct flow, mean velocity fields constructed
from the Reynolds stress vector were found to be significantly more accurate than fields
constructed from the Reynolds stress tensor.

RANS

Reynolds
stress vector

approachDNS

Reynolds
stress tensor

approach

Figure 3. Physics -informed labels matter: comparison of mean velocity flow fields from two different
ML labeling approaches, with RANS and DNS. Adapted from [76]. Copyright 2019 with permission
from Elsevier.

When dealing with ML features, two competing paradigms can be considered: (i)
learning with hand-engineered features, and (ii) representation learning [77], which seeks
to develop ML models that can perform well with raw unprocessed data. Physics-informed
features belong to the former category. Early ML work on fluid mechanics utilized con-
ventional feature selection techniques without applying domain knowledge. For example,
Duraisamy et al. [12] employed the hill-climbing algorithm [78], which works by increasing
the size of the feature set until the ML accuracy stops increasing, in an inverse modeling
problem for identifying the analytic forms of closure models. Dimensionality reduction
techniques such as proper orthogonal decomposition (POD) [79], a popular method in
analyzing turbulent flows [80], have also been applied as feature extraction techniques for
ML models. For example, Lui and Wolf [81] demonstrated the use of POD for reducing
the dimensionality of turbulent airfoil data before training an NN for a reduced-order
modeling application.

One of the first works on embedding physical knowledge into ML involves a feature
engineering technique by Ling et al. [47]. In this work, the authors embedded rotational
invariance and non-dimensionality into features for predicting Reynolds stress anisotropy.
This approach showed improvements in predictive accuracy in random forests after fea-
ture processing, while the use of untransformed data in NNs resulted in more accurate
predictions. Due to the mixed effectiveness these techniques, physics-informed feature
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techniques are typically applied on a case-by-case basis, and they can benefit from bench-
marking, as will be discussed in Section 4. Other concepts can also be embedded into the
ML model via feature transformation. For example, Xie et al. [82] transformed the spatial
coordinates of features and labels to match coordinates orthogonal to curved surfaces, and
they demonstrated an 18% reduction in error when modeling turbulent closure.

2.2. Physics-Informed Architecture

One of the earliest customized ML architectures for fluid mechanics involves the Tensor
Basis NN (TBNN) [48], which used a special architecture, shown in Figure 4, for embedding
invariance by enforcing a functional form for predicting the Reynolds stress anisotropy
tensor. In this a posteriori study, TBNN simulations accurately predicted the occurence
of corner vortices, which vanilla ML models failed to predict. Since then, the TBNN has
been extended toward problems in turbulent heat transfer [83] as well as improved [84]
to consider boundary conditions, non-locality, and Reynolds number embeddings. The
TBNN has inspired other architectures such as the Vector Basis Neural Network (VBNN) [85],
which has been modified to specifically predict the divergence of the subgrid-scale stresses.Turbulence modelling using deep neural networks 159
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Hidden layers Hidden layersOutput layer
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FIGURE 1. (Colour online) Schematic of neural network architectures.

axes are rotated. The key to ensuring Galilean invariance is therefore to ensure that
when the coordinate frame is rotated, the anisotropy tensor is also rotated by the same
angles. Therefore, if the input to the neural network is a rotated velocity gradient
tensor, the output should be the corresponding rotated anisotropy tensor. This can be
achieved by constructing an integrity basis of the input tensors. Further explanation
of integrity bases for isotropic functions can be found in Smith (1965).

For the specific case of interest here, with input tensors S and R, Pope (1975) has
previously derived the relevant integrity basis. Pope proved that in the most general
incompressible case, an eddy viscosity model that is a function of only S and R can
be expressed as a linear combination of 10 isotropic basis tensors:

b =
10X

n=1

g(n)(�1, . . . , �5)T
(n). (2.2)

Any tensor b which satisfies this condition will automatically satisfy Galilean
invariance. There are only a finite number of tensors because by the Caley–Hamilton
theory, higher order products of these two tensors can be reduced to a linear
combination of this tensor basis. The five tensor invariants �1, . . . , �5 are known
scalar functions of the elements of S and R. Pope (1975) gave a detailed derivation
of these 10 tensors, T (1), . . . , T (10) and 5 invariants �1, . . . , �5, which are listed below:

T (1) = S T (6) = R2S + SR2 � 2
3 I · Tr(SR2)

T (2) = SR � RS T (7) = RSR2 � R2SR

T (3) = S2 � 1
3 I · Tr(S2) T (8) = SRS2 � S2RS

T (4) = R2 � 1
3 I · Tr(R2) T (9) = R2S2 + S2R2 � 2

3 I · Tr(S2R2)

T (5) = RS2 � S2R T (10) = RS2R2 � R2S2R

9
>>>>>=
>>>>>;

(2.3)

�1 = Tr(S2), �2 = Tr(R2), �3 = Tr(S3), �4 = Tr(R2S), �5 = Tr(R2S2).
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Figure 4. Tensor Basis neural network architecture. Adapted from [48]. Copyright 2016 with
permission from Cambridge University Press.

Numerous other architectures have been developed with the similar purpose of en-
forcing physical, tensorial, and PDE properties via architecture modifications. For example,
Frezat et al. [86] enforced linearity, as well as Galilean, rotational and translational invari-
ances, through modifications to a CNN architecture. The resulting ML model demonstrated
lower errors than vanilla CNN models. Wang et al. [87] proposed the equivariant NN that
introduced symmetries into the ML model predictions. Liu et al. [36] introduced a PDE-
preserving NN (PPNN) architecture that demonstrated excellent stability for spatiotemporal
predictions. The PPNN works by forming residual connections between input velocities
downsampled on the right-hand side (RHS) of the Navier–Stokes equations to result in
more stable predictions than a vanilla CNN model. This approach will also be demon-
strated in a case study in Section 3. Wang et al. [88] proposed a TurbulentFlowNet (TFNet)
architecture consisting of three encoder layers that received three differently filtered input
flow fields to account for the multi-scale nature of turbulent flows. The resulting archi-
tecture outperformed standard CNN architectures in a 2D turbulent flow configuration.
Many of these architectures have been tested on different configurations. Thus, while
these studies do demonstrate that PIML techniques can outperform vanilla ML methods,
it is still difficult to ascertain the benefits of one PIML approach over another without
benchmarking, as will be discussed in Section 4.
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In contrast to the architecture-level approaches discussed, the Fourier Neural Operator
(FNO) [89] represents a physics-informed architecture method at the layer-wise level. It
is based on the Fourier transform, which is a method commonly used in spectral analysis
of turbulence and has been demonstrated in a spatiotemporal modeling problem in 2D
turbulence configurations. As shown in Figure 5, this operator works by (i) applying Fourier
transformation on the inputs, (ii) then applying a linear transformation on the lower spectral
modes, and (iii) applying an inverse Fourier transform, before (iv) adding a trainable bias
term. The NNs with FNO outperformed traditional ML approaches, demonstrating an 8%
error when applied to 2D configuration, with vorticity initialized with a normal distribution
at Re = 10,000. This approach outperforms vanilla ML approaches (11% error on U-Net [90]
and 23% error on ResNet [9]) and the aforementioned TFNet [88] (with 11% error) on the
same configuration. Recently, the FNO was also applied to a 3D LES configuration [91].

Published as a conference paper at ICLR 2021

(a) The full architecture of neural operator: start from input a. 1. Lift to a higher dimension channel space
by a neural network P . 2. Apply four layers of integral operators and activation functions. 3. Project back to
the target dimension by a neural network Q. Output u. (b) Fourier layers: Start from input v. On top: apply
the Fourier transform F ; a linear transform R on the lower Fourier modes and filters out the higher modes;

then apply the inverse Fourier transform F�1. On the bottom: apply a local linear transform W .

Figure 2: top: The architecture of the neural operators; bottom: Fourier layer.

(PINNs) (Raissi et al., 2019) aim at the latter and can therefore be computationally expensive. This
makes them impractical for applications where a solution to the PDE is required for many different
instances of the parameter. On the other hand, our approach directly approximates the operator and
is therefore much cheaper and faster, offering tremendous computational savings when compared to
traditional solvers. For an example application to Bayesian inverse problems, see Section 5.5.

Discretization. Since our data aj and uj are, in general, functions, to work with them numerically,
we assume access only to point-wise evaluations. Let Dj = {x1, . . . , xn} ⇢ D be a n-point
discretization of the domain D and assume we have observations aj |Dj 2 Rn⇥da , uj |Dj 2 Rn⇥dv ,
for a finite collection of input-output pairs indexed by j. To be discretization-invariant, the neural
operator can produce an answer u(x) for any x 2 D, potentially x /2 Dj . Such a property is highly
desirable as it allows a transfer of solutions between different grid geometries and discretizations.

3 NEURAL OPERATOR

The neural operator, proposed in (Li et al., 2020b), is formulated as an iterative architecture v0 7!
v1 7! . . . 7! vT where vj for j = 0, 1, . . . , T � 1 is a sequence of functions each taking values in
Rdv . As shown in Figure 2 (a), the input a 2 A is first lifted to a higher dimensional representation
v0(x) = P (a(x)) by the local transformation P which is usually parameterized by a shallow fully-
connected neural network. Then we apply several iterations of updates vt 7! vt+1 (defined below).
The output u(x) = Q(vT (x)) is the projection of vT by the local transformation Q : Rdv ! Rdu .
In each iteration, the update vt 7! vt+1 is defined as the composition of a non-local integral operator
K and a local, nonlinear activation function �.

Definition 1 (Iterative updates) Define the update to the representation vt 7! vt+1 by

vt+1(x) := �
⇣
Wvt(x) +

�
K(a;�)vt

�
(x)

⌘
, 8x 2 D (2)

where K : A ⇥⇥K ! L(U(D; Rdv ), U(D; Rdv )) maps to bounded linear operators on U(D; Rdv )
and is parameterized by � 2 ⇥K, W : Rdv ! Rdv is a linear transformation, and � : R ! R is a
non-linear activation function whose action is defined component-wise.

We choose K(a;�) to be a kernel integral transformation parameterized by a neural network.

Definition 2 (Kernel integral operator K) Define the kernel integral operator mapping in (2) by
�
K(a;�)vt

�
(x) :=

Z

D


�
x, y, a(x), a(y);�

�
vt(y)dy, 8x 2 D (3)

4

X W 𝝈 "𝑦+

Fourier
Transform

Filter Inverse
Fourier

Input Weights Activation
Function

Output

Figure 5. Mechanism behind the Fourier Neural Operator. Adapted from [89].

2.3. Physics-Informed Loss Functions

A major development in PIML, which deserves extensive discussion due to its prolif-
eration and influence, is the Physics-Informed Neural Network (PINNs), which was first
applied to solving a 1D Burgers equation and later applied to solving the Navier–Stokes
equations in a 2D flow over a cylinder [25]. For the problem involving the Burgers equation,
the PINN could generate spatiotemporal predictions with a O(10−4) mean-squared-error
solely with initial and boundary condition data. As with vanilla neural networks, the
predictive accuracy of PINN was still found to be dependent on the model’s hyperparam-
eters, and it increased with the amount of training data provided. In the 2D flow over
cylinder problem [25], PINNs were demonstrated to predict the pressure and viscosity of
the Navier–Stokes equations in an inverse modeling problem. This work differed from the
previous studies (which focused on model input, output, and architecture) by introducing
soft-constraints in the loss function L:

arg min
θ

N

∑
i=1

(Ldata(yi) + µLk(yi, θ)), (2)

where N is the number of training samples, µ is a tunable weighting parameter, and Lk
contains the k-th constraint, which is related to the partial differential equations (LPDE), initial
conditions, and boundary conditions. For an example involving the 1D Burgers equation:

∂u
∂t

+ u
∂u
∂x

= ν
∂2u
∂x2 (3)
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the loss function in Equation (2) for predicting velocity u with N number of training samples
(and viscosity ν) may take the form:

1
N

N

∑
i=1


‖û− u‖2︸ ︷︷ ︸

Ldata

+µ

∥∥∥∥
∂û
∂t

+ û
∂û
∂x
− ν

∂2û
∂x2

∥∥∥∥
2︸ ︷︷ ︸

LPDE


 (4)

where û is the predicted velocity from PINN, the first term of Equation (4) is the velocity
mean-squared error (MSE), while the second term represents a residual term that constrains
the optimization problem in order to produce a solution that matches (3). The schematic of
the PINN architecture for the 1D Burgers equation is depicted in Figure 6.

Figure 6. Schematic of PINN algorithm. Reprinted from [1]. Copyright 2021 with permission from
Springer Nature Limited.

The PINN framework was later extended to specifically tackle several laminar and in-
compressible fluid flow problems. This included simulating vortex-induced vibrations [22]
and tackling ill-posed inverse fluid mechanics problems through a so-called hidden fluid
mechanics framework [26]. Later, the PINN framework was demonstrated to solve the incom-
pressible Navier–Stokes equations in turbulent flow conditions [27]. In this work, two PINN
loss functions were suggested based on two forms of the incompressible Navier–Stokes
equations: (i) one based on the velocity–pressure (VP) formulation and (ii) another based
on the velocity–vorticity (VV) formulation. Both PINN approaches were tested on a range
of laminar canonical cases, as well as a turbulent channel flow, with Re = O(104), from the
Johns Hopkins Turbulent Database [92]. Both forms of the PINN were found to be effective
in simulating laminar cases, with less than 1% velocity MSE. However, a ∼10% velocity
MSE was obtained when simulating the turbulent channel DNS with the VP-PINN, while
the VV-PINN failed to converge for the turbulent cases. Similar accuracies in both laminar
and turbulent cases have been reported in another study involving PINNs with RANS-
specific loss functions [29]. While PINNs currently struggle to learn predicting turbulent
configurations, Jin et al. [27] noted that PINNs were particularly useful for applications
outside typical capabilities of traditional CFD solvers, such as inverse modeling, where the
authors could predict the flow Reynolds number from a few samples of velocity data.

PINNs have been employed for inverse modeling in experimental fluid mechanics.
Cai et al. [28] proposed a PINN-based method to infer the full continuous 3D pressure
and velocity fields on an espresso cup from the snapshots of temperature fields obtained
from tomographic background-oriented Schlieren (Tomo-BOS) imaging. On the other
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hand, Eivazi and Vinuesa [93] used noisy experimental measurements to obtain super-
resolution of flow field data in time and space using PINN.

PINNs have now influenced approaches in which loss functions are formulated in
the following non-exhaustive list of flow problems. Bode et al. [56] modeled the subgrid-
scale stresses by adding a continuity residual term g = ‖∇ · u‖2 to the loss function
of a generative adversarial network (GAN) model in a turbulent reacting flow problem.
This model, known as physics-informed enhanced super-resolution GAN (PIESR-GAN),
optimizes the physics-informed loss, which ensures continuity, along with the adversarial
and accuracy loss terms. Jiang et al. [94] also relied on PDE residuals to accurately perform
super-resolution on a turbulent Rayleigh–Bernard problem. Sun et al. [95] added a loss term
for the subgrid-scale stresses to an MSE loss function for the eddy viscosity in a turbulent
airfoil problem. An entropy term was added by Guan et al. [96] in modeling turbulence
to 2D homogeneous isotropic turbulence configurations. Laubscher [35] demonstrated
significant improvements when predicting temperature, velocity, and species mass fractions
when using segregated-network PINN instead of a vanilla PINN on simulations of water
vapor in dry air flowing in a 2D rectangular duct.

2.4. Open-Source PIML Resources

In this section, we provide the reader with several open-source resources for con-
ducting PIML research. One of the most popular datasets for studying fluid mechanics,
and earliest attempts at providing public access to turbulence data, is the Johns Hopkins
Turbulence Database [92]. Xiao et al. [97] has shared parametric geometry DNS of flows
over periodic hills, over GitHub and the NASA Langley Turbulence Modeling Portal [98].
Eckert et al. [99] presented one of the first turbulence datasets targeted specifically for ML
applications. Bonnet et al. [100] has provided an ML dataset, consisting of airfoil cases, for
approximating the RANS solution. To deal with the large cost and size of DNS datasets,
crowd-sourcing and public repositories such as Kaggle [101] could be employed to improve
access to high-fidelity ML training data. For example, BLASTNet [102], a centralized web
platform for indexing DNS data with consistent data formats, has recently been developed.
In this approach, members from the research community contribute to individual DNS
datasets that are stored in Kaggle repositories (each with O(100) GB storage limit), with
download links and metadata consolidated in a single webpage for easy accessibility.

Open-source resources are not restricted to publicly accessible datasets. Nvidia Modu-
lus [103], formerly known as SimNet, provides a framework for AI-driven multi-physics
simulations, providing access to a wide range of PIML architectures and loss functions as
well as simulation modules such as mesh generation, multi-GPU computation, etc. Re-
cently, Wang et al. [104] developed a CFD simulation framework to predict fluid flows with
a low-mach approximation on the TPU platform using Tensorflow’s ML package imple-
mented in python. JAXFluids [105] also provides a similar fully integrated framework for
fluid simulation modules and ML capabilities. PDEBench [106] presents a benchmark suite
that matches with practices from the global ML community. It provides access to popular
vanilla (U-Net [90], ResNet [9]) and physics-informed (PINN [25], FNO [89], etc.) architec-
tures, and a set of canonical configurations based on Burgers, as well as incompressible
and compressible Navier–Stokes, equations.

3. Case Study: Lid-Driven Cavity

In this section, we demonstrate the effectiveness of physics-informed machine learning
algorithms. The most popular PIML model is the PINN, which has already been shown to
be effective for several fluid flow problems. Therefore, we decided to choose a different
PIML model, i.e., the PDE-preserving neural network (PPNN). As opposed to PINN, where
the physical constraints are embedded in the form of a loss function, in PPNN, the PDE
structures are preserved by modifying the model architecture itself with the use of residual
connections. The utility of PPNN [36] has previously been demonstrated in terms of
training complexity and extrapolability for a few spatiotemporal dynamic problems. Here,
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we use the PPNN approach to reconstruct the 2D flow fields of a lid-driven cavity problem.
Our objective is to assess the advantages of using PIML models over baseline vanilla
ML models in terms of long-term prediction and generalizability, especially for unseen
parameter spaces.

3.1. Problem Setup

We consider the 2D lid-driven cavity problem at different Reynolds numbers (Re).
The data for training and validation are generated by solving the Navier–Stokes equation
numerically using a finite difference (FD) scheme. The governing equations are:

∂u
∂t

+ u · ∇u = −∇p +
1

Re
∇2u

∇ · u = 0
(5)

where u = [u(x, y, t), v(x, y, t)]T is the velocity vector, and p(x, y, t) is the pressure. The
length of the computational domain is unity in both directions. The velocity of the lid is
considered to be utop = 1. No-slip condition is enforced at the other three boundaries.
Neumann boundary conditions are applied for the pressure at all boundaries. Four different
Reynolds numbers are considered for this study: 400, 500, 600 and 750. In all cases, the
velocity and pressure fields are generated using the FD solver for 5000 numerical steps
with a time step of ∆t = 0.01. A uniform Cartesian mesh with 100× 100 is used in the
numerical solver.

The training dataset involves 100 snapshots from only two Re, i.e., 500 and 750. These
snapshots are collected every 20 numerical steps to form the training trajectory, which
means the learning step is set as τ = 20∆t = 0.2. Thus, the training set covers a total time
of T = 100τ. The trained model is then used to predict the flow field for the other Re, i.e.,
400 (extrapolation) and 600 (interpolation), which are not part of the training set. The
PPNN-specific training and prediction parameters are described in the following sections.

3.2. Implementation of PPNN

The PPNN architecture involves two components: a trainable baseline convolutional
residual network and a PDE-preserving part. Both of them are connected in an encoder–
decoder fashion. In the PDE-preserving part, the governing PDEs are constructed based on
convolution operators defined by FD stencils. A bilinearly downsampled input flow field
starting from the high-resolution data at time t is used as input to the PDE-preserving part.
The use of both convolution operators and low-resolution grid reduces the computational
overhead significantly during the model prediction. The low-resolution output from the
PDE-preserving part at time t + ∆t is then upsampled using bicubic upsampling. The
high-resolution flow field at t along with the upsampled flow field information from the
PDE-preserved portion at t + ∆t are then used as input channels in the trainable part of
the PPNN. The conceptual schematic and detailed implementation of the PPNN model
are reproduced in Figure 7 from the original paper [36]. The same architecture from the
paper is used in this study, which includes two convolutional layers with 6× 6 kernel, zero
padding and a stride of 2, which was followed by four ConvResNet blocks. Each block has a
7× 7 kernel, 96 channels and zero padding of 3. Finally, the decoder part includes pix-
elshuffle with an upscale factor of 4 along with a convolutional layer of 5× 5 kernel and
zero padding of 2. An additional input channel is included to map the physical parameter,
which is only Re in this case, to the flow field. More details regarding the implementation
of PPNN are available in Liu et al. [36].
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Figure 7. (a) The conceptual schematic of PPNN algorithm. (b) The detailed implementation of
PPNN. Reprinted from [36].

3.3. Results and Discussion

To demonstrate the advantage of using prior knowledge in an existing ML framework,
we have used two different versions of PPNN: (i) preserving full Navier–Stokes equation,
where each term in Equation (5) is constructed based on convolution operators (as shown
in Figure 7), and (ii) preserving partial Navier–Stokes equation, where all terms except the
first term of RHS (∇p) are embedded in a similar fashion. Solving real-world applications
using traditional numerical simulation methods is a great challenge, as the underlying
physics behind a phenomena may not be fully understood or the governing equations
could only be partially known. The second version of the PPNN is chosen to investigate
the impact of providing this partial knowledge to the data-driven model. Both PPNN
predictions are compared to the high-resolution FD numerical solutions as a reference. The
error at each time step, εt at time t, is defined as:

εt =
||ut(λi)− (ût−1 + fθ(ût−1, λi|θ̃))||2

||ut(λi)||2
(6)

where ut(λi) is the velocity magnitude of the reference solution at time t for the physical
parameter, λi (which corresponds to the i-th Re in this case), and fθ represents the trained
NN update with weights θ̃. The predicted solution by PPNN at time t− ∆t is denoted by
ût−∆t and evaluated as

ût = ût−∆t + fθ(ût−∆t, λi|θ̃) ∀t ∈ [2, n]

û1 = u0(λi) + fθ(u0(λi), λi|θ̃)
(7)

where n is the number of evolving steps starting from the initial high-resolution solution
field, u0. The relative testing errors of the magnitude of velocity corresponding to the
prediction of PPNN, PPNN-partial and baseline ConvResNet model compared to the
ground truth reference are shown in Figure 8. Clearly, the prediction of the baseline
model suffers from error accumulation, which is a well-established problem within auto-
regressive models. However, the physics-informed ML model, PPNN, suppresses the
error accumulation and outperforms the baseline model by providing accurate predictions
of the velocity field even beyond the training period (t > T) for Re = 500 and 750. In
case of unseen conditions (Re = 400 and 600), PPNN shows very low roll-out errors
compared to the baseline model. Even for PPNN-partial cases for both training and test Re,
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the preservation of partially known PDE structures outperforms the vanilla ConvResNet
model. Although there is an error for Re = 400 and 600, PPNN-partial exhibits a larger
error than fully known PDE preserved PPNN, the error never accumulates, and it provides
a stable and reasonably accurate solution.
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(b)
Figure 8. (a) Relative error (εt) in prediction of magnitude of velocity at different time steps for
Re = 500 and 750. The green and pink boxes correspond to the steps included in the training of
PPNN and forecasting (extrapolation), respectively. (b) Relative error (εt) in prediction of magnitude
of velocity at different time steps for Re = 400 and 600. These two Re are not included in training;
thus, all steps correspond to the pink box.

To emphasize the advantage of PPNN even further, the contours of the velocity
field prediction from PPNN, PPNN-partial and the baseline model along with ground
truth are shown in Figure 9 for Re = 400. Both PPNN predictions emulate the ground
truth accurately which is consistent with the error plot (Figure 8). In contrast, despite
accurate predictions from the baseline model during the few initial timesteps, error rapidly
accumulates to provide random, noisy and unphysical solution field. Overall, PPNN (an
example of a PIML approach) demonstrates significantly better generalizability, stability
and robustness in terms of long-term prediction than the baseline (vanilla) ML model.
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Figure 9. Predicted snapshots of magnitude of velocity obtained from the finite-difference solution
(Truth), baseline ConvResNet architecture (Baseline), the PPNN with fully known Navier–Stokes
equation, and the PPNN with partially known Navier–Stokes equation at Re = 400, which is not part
of the training set.
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4. Challenges and Opportunities

PIML has been developed with the overarching goal of improving the generalizability
of model predictions outside of relatively small fluid mechanics datasets employed to
train ML models. While studies so far have demonstrated that many of the existing PIML
approaches can have benefits over vanilla ML approaches, physics-informed approaches in
fluid mechanics (especially in turbulent flow problems) can still be advanced as this set of
techniques matures. Having discussed the existing literature and demonstrated the utility
of PIML in fluid mechanics, we conclude this review with a set of recommendations for
readers interested in advancing this field. This includes (i) benchmarking, (ii) optimization,
(iii) new algorithms and applications, and (iv) limitations in predicting complex flow
configurations. These topics are tailored for PIML in fluid mechanics. We have provided
a more general discussion on ML in reacting/non-reacting flows on broader ranging
challenges and opportunities, such as interpretability, uncertainty quantification, and
computational complexity in another review paper [61].

4.1. Benchmarking Existing PIML Methods

One of the largest challenges in ML is differentiating the benefits of competing meth-
ods, since the superior performance of specific ML methods can be highly dependent
on the problem statement, configuration, and dataset. This is one reason that many ML
practitioners still rely on hyperparameter searches [107] to identify the most suitable algo-
rithm, architecture, and parameters when applying ML to a new problem. As such, it is
currently not entirely clear whether physics-informed features, labels, architectures, and
loss functions outperform competing ML paradigms, especially since PIML methods have
been demonstrated to be ineffective and even harmful in certain test conditions [108]. Fortu-
nately, this is a challenge that can be addressed as ML in fluid mechanics begins to mature.
To overcome this challenge, mature ML fields (such as computer vision and natural lan-
guage processing (NLP)) have established a culture of benchmarking hundreds of popular
strategies through competitions [10,109] on community-established datasets. This culture
could be emulated for fluid mechanics studies, which would result in numerous benchmark
studies for the fluid mechanics community. However, significant strides in (i) forming
community-accepted datasets [102] and (ii) organizing a community-wide benchmarking
study will need to be accomplished before such a challenge can be met. Numerous efforts
discussed in Section 2.4 present a step toward addressing these challenges.

4.2. Optimization and Loss

Many of the ideas that have led to the development of physics-informed loss functions
have existed prior to the contemporary proliferation of ML techniques. For example, the
idea of constraining neural networks for scientific modeling have existed since 1992, when
Psichogios and Ungar [110] trained a custom loss function formulated from differential
equations that governed a bioreactor model. Results from this model showed higher
accuracy, generalization properties, and training data efficiency than conventional NNs.
As such, there is an abundance of ML literature that can inspire advancements physics-
informed loss approaches.

From a more conventional ML perspective, the use of physics-informed loss functions
is highly related to the practice of regularization [111], which is typically used to address
overfitting. Overfitting occurs when an ML model can predict accurately when fed with
inputs from the training set, but it predicts poorly when fed with inputs from outside the
training set. Conventional forms of regularization would involve the use of the L2-norm and
L1-norm of model weight W, i.e., ‖W‖2 and ‖W‖1, respectively. The minimization of the
L2-norm results in evenly distributed weights with small magnitudes, and thus, it reduces
model complexity when fully trained, while minimization of the L1-norm encourages the
formation of zero-value model weights and thus results in sparse ML models. Hence, from
a regularization perspective, PINNs could be viewed as NNs that have been regularized by
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domain knowledge to generalize to out-of-distribution samples with the same governing
PDEs/ODEs.

Analysis from a regularization perspective has successfully revealed important prop-
erties of PINNs [108]. PINN regularization differs from the aforementioned norm reg-
ularization, as norm functions are convex. In contrast, physics-informed loss functions
are not guaranteed to be convex, while the introduction of differential operators to the
loss function could result in an ill-conditioned problem during training. Krishnapriyan
et al. [108] demonstrated that these challenges in optimization could result in PINNs with
100% error even in simple advection problems. However, the authors also demonstrated
that several strategies could be employed for overcoming these issues in optimization.
Firstly, a warm start-up approach (which involves training a PINN on a simple prob-
lem before progressively training the same network on more complex configurations)
was demonstrated to alleviate this optimization issue. Secondly, the authors demon-
strated that PINNs were more suited for sequence modeling (where solutions in a late
timestep are predicted from solutions from a previous timestep) as opposed to previ-
ous work [25] that focused on predicting the entire spatiotemporal solution at once from
initial/boundary conditions.

This work demonstrates that the physics-informed loss function can benefit from stud-
ies in related fields where ML models are applied in many tasks (multi-task learning [112])
and multiple objectives (multi-objective optimization [113]), which have been studied exten-
sively from a theoretical viewpoint and applied to practical systems in robotics, computer
vision, and NLP. Since PINNs and physics-informed loss functions are relatively new,
advancements in this direction have been fairly recent.

4.3. Embedding Physics to New Algorithms and Applications

One of the largest challenges for ML research is the fast-moving pace and wide-ranging
nature of the field. For example, in computer vision, GANs [114] (alongside its variants)
were widely held as the best model for generative ML, but recently, diffusion probabilistic
models [115] have become much more popular [116]. As such, there are many opportunities
to extend the PIML framework to new algorithms that have been developed for applications
outside of fluid mechanics.

This is especially true since PIML developments in other scientific and engineering
fields can be demonstrated and modified for predicting flow fields. For example, PINNs
that have been developed for solving problems in chemical kinetics could be extended to
the study of reacting flows. One of these developments includes the Stiff-PINN [33], which
first treats species with faster time scales, i.e., quasi-steady species (QSS), before treating
the rest of the species with a standard PINN. Similarly, Weng and Zhou [34] proposed the
multiscale PINN (MPINN), which forms clusters of species based on their time scales and
then trains separate NNs with the individual clusters. These are a non-exhaustive list of
PINN variants that should be explored on different flow configurations.

We note that while this review has mostly focused on supervised learning due to
their popularity within ML research, PIML could be employed toward unsupervised
algorithms and semi-supervised algorithms, which have not been studied as extensively
when compared to studies involving NNs. For example, Baddoo et al. [117] introduced
physics-informed dynamic mode decomposition that introduced constraints based on
conservation, self-adjointness, localization, causality, and shift invariance. The method
outperformed the vanilla dimensionality reduction technique [118] on a wide range of
PDE problems, including a transitional channel flow configuration. In another example,
Liu and Wang [119] developed a physics-informed deep reinforcement learning system
by introducing governing differential equations to loss functions of a model-based RL
system. This approach outperformed vanilla algorithms when applied to a control problem
involving viscous Burgers equation.
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4.4. Limitations in Predicting Complex Configurations

Throughout this review, we have noted that while PIML methods have demonstrated
low errors in laminar configurations, errors in turbulent flows are often orders of magnitude
higher in comparison due to problems tied to (i) non-linearity, (ii) high-dimensionality,
and (iii) multi-scale physics. More extensive studies will be needed to identify specific
ML approaches that can address these issues before the merits of physics-informed ap-
proaches can be rigorously evaluated. An extensive study [120] involving seven different
deep learning architectures revealed errors ranging from 1 to 20% error (depending on
the architecture used) in the velocity spectra when predicting the temporal evolution of
3D-filtered compressible homogeneous isotropic turbulence. This study provides recom-
mendations in choosing specific deep learning layers and pre-processing the data (such
as data augmentation [121] through Gaussian noise and the use of dilated convolutional
layers [122]) for minimizing errors in turbulent flows, which can be emulated in studies
focused on challenging turbulent regimes.

As PIML matures, these techniques will eventually be employed to modeling and
studying realistic configurations found in environmental and industrial settings, which
offer additional challenges tied to (i) complex geometries as well as (ii) poorly understood
multi-physics phenomena. Promising techniques for treating configurations with complex
geometries include architectures specialized for unstructured data such as graph neural
networks (GNNs) [123], which have already been demonstrated for flow prediction prob-
lems on a wide range of mesh geometries [124]. He et al. [125] highlighted the suitability
of this method over conventional ML methods by demonstrating that the velocity flow
fields predicted by GNNs (6% error) outperformed conventional feedforward and CNN
architectures (16% and 42% error, respectively) when comparing force coefficients evaluated
from those flow fields in a 2D unstructured configuration of flow-over-a-cylinder over
multiple Re.

In many realistic flow problems, multi-physics phenomena (such as those found in
non-Newtonian, multi-phase, trans-/super-critical, and hypersonic flows) are still not
well understood, which can introduce uncertainty when developing predictive models
and simulations. This can introduce limitations in availability of high-quality data, since
the training data could be obfuscated by inaccurate assumptions/observations. Here,
PIML methods should be combined with algorithms that can measure the uncertainty
of their predictions, such as Gaussian Process Regression [126] and Bayesian neural net-
works [127]. Physics-informed versions of these models have been applied to generic
PDE problems [128] and can be extended toward these challenging flow configurations.
In addition to limitations, these poorly understood configurations include opportunities
to combine domain expertise with knowledge discovery algorithms. An example of this
involves the modeling turbulent phenomena within trans-/super-critical flows, which can
introduce uncertainty to traditional turbulence modeling approaches due to new closure
terms that can arise from nonlinear thermodynamic and transport properties. Here, domain
knowledge can be employed to reduce the computational cost of symbolic regression meth-
ods (through reduction of the search space) to discover new closure models from DNS data,
which have been performed in previous studies [24,129]. These sets of methods could be
extended for model discovery applications in other poorly understood flow configurations.

5. Conclusions

In this article, we have reviewed the physics-informed ML techniques for applications
within fluid flow problems. The general idea behind PIML models is to integrate domain
knowledge and/or the information about the governing PDEs with the deep NN models.
Incorporating these aspects with traditional ML algorithms have resulted in better and
more stable prediction accuracy, faster training and improved generalizability. Thus, the
successful embedding of physical knowledge, either as input features/labels or in the form
of a modified loss function or by preserving the PDE structures in the model architecture
itself, holds exciting promise for the advancement of solving fluid flows, especially complex
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turbulent flows. Here, we have highlighted the applications of PIML in the field of fluid
mechanics, ranging from knowledge discovery, prediction of spatiotemporal dynamics in
different flow configurations, as well as super-resolution and turbulent closure modeling.
We also demonstrate the utility of a PIML algorithm through a standard fluid flow problem.

Fluid mechanics is a data-rich field that is founded on physical concepts encapsulating
conservation relations. Relying solely on the data-driven methods may omit these concepts,
as data-driven methods could ignore certain physical constraints or conservation principles.
Therefore, fluid mechanics problems can be an excellent testbed for developing novel PIML
algorithms. While PIML approaches have demonstrated significant progress in fluid flow
problems, several open questions and opportunities still exist. As each PIML model has
only been demonstrated on particular problem configurations and datasets, benchmarking
existing PIML methods is still an open challenge, which will need to be addressed as ML
within fluid mechanics matures. It is also important to keep track of the fast-moving and
mercurial developments of ML outside fluid mechanics. In these domains, new innovations
are introduced at a rapid pace, leaving many existing methods obsolete. Researchers should
take inspiration from these developments either to improve specfic components of existing
PIML models (such as optimization routines and loss functions) or to develop entirely new
algorithms for resolving existing challenges within flow problems. As PIML development
continues to progress, this set of approaches is expected to play a significant role in the
offering computationally efficient predictive models to fluid mechanics that could be more
reliable than their vanilla counterparts, especially in complex flow configurations.
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Abbreviations
The following abbreviations are used in this manuscript:

ML Machine learning
PIML Physics-informed machine learning
NN Neural network
CFD Computational fluid dynamics
DNS Direct numerical simulation
GPU Graphics processing unit
TPU Tensor processing unit
MLP Multi-layer perceptron
CNN Convolutional neural network
RL Reinforcement learning
Re Reynolds number
PINN Physics-informed neural network
PPNN PDE-preserved neural network
LES Large-eddy simulation
RANS Reynolds average Navier-Stokes
ODE Ordinary differential equation
PDE Partial differential equation
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POD Proper orthogonal decomposition
TBNN Tensor basis neural network
VBNN Vector basis neural network
RHS Right-hand side
TFNet TurbulentFlowNet
FNO Fourier neural operator
MSE Mean-squared error
VP Velocity–pressure
VV Velocity–vorticity
GAN Generative adversarial network
PIESR-GAN Physics-informed enhanced super-resolution GAN
FD Finite difference
NLP Natural language processing
QSS Quasi-steady species
GNN Graph neural network
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